A reference free iterative learning strategy for wet clutch control
This paper presents a new iterative learning strategy to control wet clutches. These are complex hydraulic systems that are commonly used in automatic transmissions of heavy duty vehicles, and their control aims at performing fast and smooth engagements. Learning is used to overcome the need for com...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2447 |
---|---|
container_issue | |
container_start_page | 2442 |
container_title | |
container_volume | |
creator | Depraetere, Bruno Pinte, Gregory Swevers, Jan |
description | This paper presents a new iterative learning strategy to control wet clutches. These are complex hydraulic systems that are commonly used in automatic transmissions of heavy duty vehicles, and their control aims at performing fast and smooth engagements. Learning is used to overcome the need for complex models and to maintain performance despite large variations in the system behavior. Classical iterative learning control techniques can however not be employed directly since reference trajectories corresponding to the performance requirements are unavailable. Instead, the presented iterative learning strategy translates the performance requirements directly into an objective function and constraints, hence constituting a numerical optimization problem. After each engagement, this problem is solved in order to find the control signal for the next engagement, using a piecewise linear model for the clutch. Learning is included by using the measured response data to update the models and constraints used by the optimization problem. The presented strategy is successfully validated on an experimental test bench containing wet clutches. The learning process is shown to converge towards the desired engagement quality, and a demonstration is given of the robustness with respect to changes in the operating conditions. |
doi_str_mv | 10.1109/ACC.2011.5990938 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5990938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5990938</ieee_id><sourcerecordid>5990938</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7e9d1900ed1934ea0093c23408d1fead5d59f7cdd81a986cacc087ba008621243</originalsourceid><addsrcrecordid>eNotUE1LxDAUjF9gd9274CV_oPW9pmnyjkvxCxa86HmJ6esaqa2kUdl_b8FeZmBmGJgR4hqhQAS63TZNUQJioYmAlD0RGzIWK20MgCF7KrJSGZtrW-OZWC2GBXsuMjCVyrFGuhSrafoAQKIaMtFsZeSOIw-eZReZZUgcXQo_LHt2cQjDQU5pVvhwlN0Y5S8n6fvv5N-lH4cUx_5KXHSun3iz8Fq83t-9NI_57vnhqdnu8oBGp9wwtUgAPKOq2MG8wZeqAttix67VrabO-La16MjW3nkP1rzNOVuXWFZqLW7-ewMz779i-HTxuF_OUH8pvU5-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A reference free iterative learning strategy for wet clutch control</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Depraetere, Bruno ; Pinte, Gregory ; Swevers, Jan</creator><creatorcontrib>Depraetere, Bruno ; Pinte, Gregory ; Swevers, Jan</creatorcontrib><description>This paper presents a new iterative learning strategy to control wet clutches. These are complex hydraulic systems that are commonly used in automatic transmissions of heavy duty vehicles, and their control aims at performing fast and smooth engagements. Learning is used to overcome the need for complex models and to maintain performance despite large variations in the system behavior. Classical iterative learning control techniques can however not be employed directly since reference trajectories corresponding to the performance requirements are unavailable. Instead, the presented iterative learning strategy translates the performance requirements directly into an objective function and constraints, hence constituting a numerical optimization problem. After each engagement, this problem is solved in order to find the control signal for the next engagement, using a piecewise linear model for the clutch. Learning is included by using the measured response data to update the models and constraints used by the optimization problem. The presented strategy is successfully validated on an experimental test bench containing wet clutches. The learning process is shown to converge towards the desired engagement quality, and a demonstration is given of the robustness with respect to changes in the operating conditions.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 1457700808</identifier><identifier>ISBN: 9781457700804</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 9781457700798</identifier><identifier>EISBN: 1457700816</identifier><identifier>EISBN: 9781457700811</identifier><identifier>EISBN: 1457700794</identifier><identifier>DOI: 10.1109/ACC.2011.5990938</identifier><language>eng</language><publisher>IEEE</publisher><subject>Estimation ; Numerical models ; Optimization ; Pistons ; Predictive models ; Shafts ; Torque</subject><ispartof>Proceedings of the 2011 American Control Conference, 2011, p.2442-2447</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5990938$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2062,27934,54929</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5990938$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Depraetere, Bruno</creatorcontrib><creatorcontrib>Pinte, Gregory</creatorcontrib><creatorcontrib>Swevers, Jan</creatorcontrib><title>A reference free iterative learning strategy for wet clutch control</title><title>Proceedings of the 2011 American Control Conference</title><addtitle>ACC</addtitle><description>This paper presents a new iterative learning strategy to control wet clutches. These are complex hydraulic systems that are commonly used in automatic transmissions of heavy duty vehicles, and their control aims at performing fast and smooth engagements. Learning is used to overcome the need for complex models and to maintain performance despite large variations in the system behavior. Classical iterative learning control techniques can however not be employed directly since reference trajectories corresponding to the performance requirements are unavailable. Instead, the presented iterative learning strategy translates the performance requirements directly into an objective function and constraints, hence constituting a numerical optimization problem. After each engagement, this problem is solved in order to find the control signal for the next engagement, using a piecewise linear model for the clutch. Learning is included by using the measured response data to update the models and constraints used by the optimization problem. The presented strategy is successfully validated on an experimental test bench containing wet clutches. The learning process is shown to converge towards the desired engagement quality, and a demonstration is given of the robustness with respect to changes in the operating conditions.</description><subject>Estimation</subject><subject>Numerical models</subject><subject>Optimization</subject><subject>Pistons</subject><subject>Predictive models</subject><subject>Shafts</subject><subject>Torque</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>1457700808</isbn><isbn>9781457700804</isbn><isbn>9781457700798</isbn><isbn>1457700816</isbn><isbn>9781457700811</isbn><isbn>1457700794</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUE1LxDAUjF9gd9274CV_oPW9pmnyjkvxCxa86HmJ6esaqa2kUdl_b8FeZmBmGJgR4hqhQAS63TZNUQJioYmAlD0RGzIWK20MgCF7KrJSGZtrW-OZWC2GBXsuMjCVyrFGuhSrafoAQKIaMtFsZeSOIw-eZReZZUgcXQo_LHt2cQjDQU5pVvhwlN0Y5S8n6fvv5N-lH4cUx_5KXHSun3iz8Fq83t-9NI_57vnhqdnu8oBGp9wwtUgAPKOq2MG8wZeqAttix67VrabO-La16MjW3nkP1rzNOVuXWFZqLW7-ewMz779i-HTxuF_OUH8pvU5-</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Depraetere, Bruno</creator><creator>Pinte, Gregory</creator><creator>Swevers, Jan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201106</creationdate><title>A reference free iterative learning strategy for wet clutch control</title><author>Depraetere, Bruno ; Pinte, Gregory ; Swevers, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7e9d1900ed1934ea0093c23408d1fead5d59f7cdd81a986cacc087ba008621243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Estimation</topic><topic>Numerical models</topic><topic>Optimization</topic><topic>Pistons</topic><topic>Predictive models</topic><topic>Shafts</topic><topic>Torque</topic><toplevel>online_resources</toplevel><creatorcontrib>Depraetere, Bruno</creatorcontrib><creatorcontrib>Pinte, Gregory</creatorcontrib><creatorcontrib>Swevers, Jan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Depraetere, Bruno</au><au>Pinte, Gregory</au><au>Swevers, Jan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A reference free iterative learning strategy for wet clutch control</atitle><btitle>Proceedings of the 2011 American Control Conference</btitle><stitle>ACC</stitle><date>2011-06</date><risdate>2011</risdate><spage>2442</spage><epage>2447</epage><pages>2442-2447</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>1457700808</isbn><isbn>9781457700804</isbn><eisbn>9781457700798</eisbn><eisbn>1457700816</eisbn><eisbn>9781457700811</eisbn><eisbn>1457700794</eisbn><abstract>This paper presents a new iterative learning strategy to control wet clutches. These are complex hydraulic systems that are commonly used in automatic transmissions of heavy duty vehicles, and their control aims at performing fast and smooth engagements. Learning is used to overcome the need for complex models and to maintain performance despite large variations in the system behavior. Classical iterative learning control techniques can however not be employed directly since reference trajectories corresponding to the performance requirements are unavailable. Instead, the presented iterative learning strategy translates the performance requirements directly into an objective function and constraints, hence constituting a numerical optimization problem. After each engagement, this problem is solved in order to find the control signal for the next engagement, using a piecewise linear model for the clutch. Learning is included by using the measured response data to update the models and constraints used by the optimization problem. The presented strategy is successfully validated on an experimental test bench containing wet clutches. The learning process is shown to converge towards the desired engagement quality, and a demonstration is given of the robustness with respect to changes in the operating conditions.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2011.5990938</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0743-1619 |
ispartof | Proceedings of the 2011 American Control Conference, 2011, p.2442-2447 |
issn | 0743-1619 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_5990938 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Estimation Numerical models Optimization Pistons Predictive models Shafts Torque |
title | A reference free iterative learning strategy for wet clutch control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T21%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20reference%20free%20iterative%20learning%20strategy%20for%20wet%20clutch%20control&rft.btitle=Proceedings%20of%20the%202011%20American%20Control%20Conference&rft.au=Depraetere,%20Bruno&rft.date=2011-06&rft.spage=2442&rft.epage=2447&rft.pages=2442-2447&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=1457700808&rft.isbn_list=9781457700804&rft_id=info:doi/10.1109/ACC.2011.5990938&rft_dat=%3Cieee_6IE%3E5990938%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457700798&rft.eisbn_list=1457700816&rft.eisbn_list=9781457700811&rft.eisbn_list=1457700794&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5990938&rfr_iscdi=true |