A reference free iterative learning strategy for wet clutch control

This paper presents a new iterative learning strategy to control wet clutches. These are complex hydraulic systems that are commonly used in automatic transmissions of heavy duty vehicles, and their control aims at performing fast and smooth engagements. Learning is used to overcome the need for com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Depraetere, Bruno, Pinte, Gregory, Swevers, Jan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2447
container_issue
container_start_page 2442
container_title
container_volume
creator Depraetere, Bruno
Pinte, Gregory
Swevers, Jan
description This paper presents a new iterative learning strategy to control wet clutches. These are complex hydraulic systems that are commonly used in automatic transmissions of heavy duty vehicles, and their control aims at performing fast and smooth engagements. Learning is used to overcome the need for complex models and to maintain performance despite large variations in the system behavior. Classical iterative learning control techniques can however not be employed directly since reference trajectories corresponding to the performance requirements are unavailable. Instead, the presented iterative learning strategy translates the performance requirements directly into an objective function and constraints, hence constituting a numerical optimization problem. After each engagement, this problem is solved in order to find the control signal for the next engagement, using a piecewise linear model for the clutch. Learning is included by using the measured response data to update the models and constraints used by the optimization problem. The presented strategy is successfully validated on an experimental test bench containing wet clutches. The learning process is shown to converge towards the desired engagement quality, and a demonstration is given of the robustness with respect to changes in the operating conditions.
doi_str_mv 10.1109/ACC.2011.5990938
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5990938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5990938</ieee_id><sourcerecordid>5990938</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7e9d1900ed1934ea0093c23408d1fead5d59f7cdd81a986cacc087ba008621243</originalsourceid><addsrcrecordid>eNotUE1LxDAUjF9gd9274CV_oPW9pmnyjkvxCxa86HmJ6esaqa2kUdl_b8FeZmBmGJgR4hqhQAS63TZNUQJioYmAlD0RGzIWK20MgCF7KrJSGZtrW-OZWC2GBXsuMjCVyrFGuhSrafoAQKIaMtFsZeSOIw-eZReZZUgcXQo_LHt2cQjDQU5pVvhwlN0Y5S8n6fvv5N-lH4cUx_5KXHSun3iz8Fq83t-9NI_57vnhqdnu8oBGp9wwtUgAPKOq2MG8wZeqAttix67VrabO-La16MjW3nkP1rzNOVuXWFZqLW7-ewMz779i-HTxuF_OUH8pvU5-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A reference free iterative learning strategy for wet clutch control</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Depraetere, Bruno ; Pinte, Gregory ; Swevers, Jan</creator><creatorcontrib>Depraetere, Bruno ; Pinte, Gregory ; Swevers, Jan</creatorcontrib><description>This paper presents a new iterative learning strategy to control wet clutches. These are complex hydraulic systems that are commonly used in automatic transmissions of heavy duty vehicles, and their control aims at performing fast and smooth engagements. Learning is used to overcome the need for complex models and to maintain performance despite large variations in the system behavior. Classical iterative learning control techniques can however not be employed directly since reference trajectories corresponding to the performance requirements are unavailable. Instead, the presented iterative learning strategy translates the performance requirements directly into an objective function and constraints, hence constituting a numerical optimization problem. After each engagement, this problem is solved in order to find the control signal for the next engagement, using a piecewise linear model for the clutch. Learning is included by using the measured response data to update the models and constraints used by the optimization problem. The presented strategy is successfully validated on an experimental test bench containing wet clutches. The learning process is shown to converge towards the desired engagement quality, and a demonstration is given of the robustness with respect to changes in the operating conditions.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 1457700808</identifier><identifier>ISBN: 9781457700804</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 9781457700798</identifier><identifier>EISBN: 1457700816</identifier><identifier>EISBN: 9781457700811</identifier><identifier>EISBN: 1457700794</identifier><identifier>DOI: 10.1109/ACC.2011.5990938</identifier><language>eng</language><publisher>IEEE</publisher><subject>Estimation ; Numerical models ; Optimization ; Pistons ; Predictive models ; Shafts ; Torque</subject><ispartof>Proceedings of the 2011 American Control Conference, 2011, p.2442-2447</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5990938$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2062,27934,54929</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5990938$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Depraetere, Bruno</creatorcontrib><creatorcontrib>Pinte, Gregory</creatorcontrib><creatorcontrib>Swevers, Jan</creatorcontrib><title>A reference free iterative learning strategy for wet clutch control</title><title>Proceedings of the 2011 American Control Conference</title><addtitle>ACC</addtitle><description>This paper presents a new iterative learning strategy to control wet clutches. These are complex hydraulic systems that are commonly used in automatic transmissions of heavy duty vehicles, and their control aims at performing fast and smooth engagements. Learning is used to overcome the need for complex models and to maintain performance despite large variations in the system behavior. Classical iterative learning control techniques can however not be employed directly since reference trajectories corresponding to the performance requirements are unavailable. Instead, the presented iterative learning strategy translates the performance requirements directly into an objective function and constraints, hence constituting a numerical optimization problem. After each engagement, this problem is solved in order to find the control signal for the next engagement, using a piecewise linear model for the clutch. Learning is included by using the measured response data to update the models and constraints used by the optimization problem. The presented strategy is successfully validated on an experimental test bench containing wet clutches. The learning process is shown to converge towards the desired engagement quality, and a demonstration is given of the robustness with respect to changes in the operating conditions.</description><subject>Estimation</subject><subject>Numerical models</subject><subject>Optimization</subject><subject>Pistons</subject><subject>Predictive models</subject><subject>Shafts</subject><subject>Torque</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>1457700808</isbn><isbn>9781457700804</isbn><isbn>9781457700798</isbn><isbn>1457700816</isbn><isbn>9781457700811</isbn><isbn>1457700794</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUE1LxDAUjF9gd9274CV_oPW9pmnyjkvxCxa86HmJ6esaqa2kUdl_b8FeZmBmGJgR4hqhQAS63TZNUQJioYmAlD0RGzIWK20MgCF7KrJSGZtrW-OZWC2GBXsuMjCVyrFGuhSrafoAQKIaMtFsZeSOIw-eZReZZUgcXQo_LHt2cQjDQU5pVvhwlN0Y5S8n6fvv5N-lH4cUx_5KXHSun3iz8Fq83t-9NI_57vnhqdnu8oBGp9wwtUgAPKOq2MG8wZeqAttix67VrabO-La16MjW3nkP1rzNOVuXWFZqLW7-ewMz779i-HTxuF_OUH8pvU5-</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Depraetere, Bruno</creator><creator>Pinte, Gregory</creator><creator>Swevers, Jan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201106</creationdate><title>A reference free iterative learning strategy for wet clutch control</title><author>Depraetere, Bruno ; Pinte, Gregory ; Swevers, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7e9d1900ed1934ea0093c23408d1fead5d59f7cdd81a986cacc087ba008621243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Estimation</topic><topic>Numerical models</topic><topic>Optimization</topic><topic>Pistons</topic><topic>Predictive models</topic><topic>Shafts</topic><topic>Torque</topic><toplevel>online_resources</toplevel><creatorcontrib>Depraetere, Bruno</creatorcontrib><creatorcontrib>Pinte, Gregory</creatorcontrib><creatorcontrib>Swevers, Jan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Depraetere, Bruno</au><au>Pinte, Gregory</au><au>Swevers, Jan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A reference free iterative learning strategy for wet clutch control</atitle><btitle>Proceedings of the 2011 American Control Conference</btitle><stitle>ACC</stitle><date>2011-06</date><risdate>2011</risdate><spage>2442</spage><epage>2447</epage><pages>2442-2447</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>1457700808</isbn><isbn>9781457700804</isbn><eisbn>9781457700798</eisbn><eisbn>1457700816</eisbn><eisbn>9781457700811</eisbn><eisbn>1457700794</eisbn><abstract>This paper presents a new iterative learning strategy to control wet clutches. These are complex hydraulic systems that are commonly used in automatic transmissions of heavy duty vehicles, and their control aims at performing fast and smooth engagements. Learning is used to overcome the need for complex models and to maintain performance despite large variations in the system behavior. Classical iterative learning control techniques can however not be employed directly since reference trajectories corresponding to the performance requirements are unavailable. Instead, the presented iterative learning strategy translates the performance requirements directly into an objective function and constraints, hence constituting a numerical optimization problem. After each engagement, this problem is solved in order to find the control signal for the next engagement, using a piecewise linear model for the clutch. Learning is included by using the measured response data to update the models and constraints used by the optimization problem. The presented strategy is successfully validated on an experimental test bench containing wet clutches. The learning process is shown to converge towards the desired engagement quality, and a demonstration is given of the robustness with respect to changes in the operating conditions.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2011.5990938</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof Proceedings of the 2011 American Control Conference, 2011, p.2442-2447
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_5990938
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Estimation
Numerical models
Optimization
Pistons
Predictive models
Shafts
Torque
title A reference free iterative learning strategy for wet clutch control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T21%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20reference%20free%20iterative%20learning%20strategy%20for%20wet%20clutch%20control&rft.btitle=Proceedings%20of%20the%202011%20American%20Control%20Conference&rft.au=Depraetere,%20Bruno&rft.date=2011-06&rft.spage=2442&rft.epage=2447&rft.pages=2442-2447&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=1457700808&rft.isbn_list=9781457700804&rft_id=info:doi/10.1109/ACC.2011.5990938&rft_dat=%3Cieee_6IE%3E5990938%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457700798&rft.eisbn_list=1457700816&rft.eisbn_list=9781457700811&rft.eisbn_list=1457700794&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5990938&rfr_iscdi=true