Neural network chaotic system identification
This research focuses on system identification using alternative neural network architectures, where the dynamics of the underlying system are chaotic. A neural network is trained on the measured input-output data of the actual system. The actual system model examined is based on the Lorenz equation...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 812 vol.2 |
---|---|
container_issue | |
container_start_page | 809 |
container_title | |
container_volume | |
creator | Hutchins, R.G. |
description | This research focuses on system identification using alternative neural network architectures, where the dynamics of the underlying system are chaotic. A neural network is trained on the measured input-output data of the actual system. The actual system model examined is based on the Lorenz equations for the chaotic attractor of the same name. For comparison, a quadratic system is also studied. In this research, both standard feedforward network architectures and recurrent network topologies proved inadequate to successfully identify the chaotic system, although the quadratic system was readily identified by both architectures. A radial basis network architecture was able to capture the qualitative behavior of the chaotic system on predictive data sets. However, the absolute error in the estimates remained high. Subsampling either produced no substantive improvement or led to impractical retina sizes. |
doi_str_mv | 10.1109/ACSSC.1996.599056 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_599056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>599056</ieee_id><sourcerecordid>599056</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-20d679f4a3d22809ccc6fe39f1b3317939fa5f9ca74a0c9823f5c0bb64fe16e73</originalsourceid><addsrcrecordid>eNotj81KxDAUhYM_YBn7ALrqA9ia5CY3ucuh6CgMuhhdD2maYHSmI21E5u0tjGdzPjjwwWHsRvBGCE73y3azaRtBhI0m4hrPWCG1wVoCh3NWkrHcCosGFdoLVgiubY1AcMXKafrkcxSoeS_Y3Uv4Gd2uGkL-PYxflf9wh5x8NR2nHPZV6sOQU0ze5XQYrtlldLsplP-9YO-PD2_tU71-XT23y3WdhJG5lrxHQ1E56KW0nLz3GANQFB2AMDST05G8M8pxT1ZC1J53HaoYBAYDC3Z78qYQwvZ7THs3Hrenq_AHJmNFWA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural network chaotic system identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hutchins, R.G.</creator><creatorcontrib>Hutchins, R.G.</creatorcontrib><description>This research focuses on system identification using alternative neural network architectures, where the dynamics of the underlying system are chaotic. A neural network is trained on the measured input-output data of the actual system. The actual system model examined is based on the Lorenz equations for the chaotic attractor of the same name. For comparison, a quadratic system is also studied. In this research, both standard feedforward network architectures and recurrent network topologies proved inadequate to successfully identify the chaotic system, although the quadratic system was readily identified by both architectures. A radial basis network architecture was able to capture the qualitative behavior of the chaotic system on predictive data sets. However, the absolute error in the estimates remained high. Subsampling either produced no substantive improvement or led to impractical retina sizes.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9780818676468</identifier><identifier>ISBN: 0818676469</identifier><identifier>EISSN: 2576-2303</identifier><identifier>DOI: 10.1109/ACSSC.1996.599056</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chaos ; Equations ; Feeds ; Multi-layer neural network ; Network topology ; Neural networks ; Nonlinear dynamical systems ; Retina ; Sampling methods ; System identification</subject><ispartof>Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers, 1996, p.809-812 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/599056$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/599056$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hutchins, R.G.</creatorcontrib><title>Neural network chaotic system identification</title><title>Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>This research focuses on system identification using alternative neural network architectures, where the dynamics of the underlying system are chaotic. A neural network is trained on the measured input-output data of the actual system. The actual system model examined is based on the Lorenz equations for the chaotic attractor of the same name. For comparison, a quadratic system is also studied. In this research, both standard feedforward network architectures and recurrent network topologies proved inadequate to successfully identify the chaotic system, although the quadratic system was readily identified by both architectures. A radial basis network architecture was able to capture the qualitative behavior of the chaotic system on predictive data sets. However, the absolute error in the estimates remained high. Subsampling either produced no substantive improvement or led to impractical retina sizes.</description><subject>Chaos</subject><subject>Equations</subject><subject>Feeds</subject><subject>Multi-layer neural network</subject><subject>Network topology</subject><subject>Neural networks</subject><subject>Nonlinear dynamical systems</subject><subject>Retina</subject><subject>Sampling methods</subject><subject>System identification</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9780818676468</isbn><isbn>0818676469</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KxDAUhYM_YBn7ALrqA9ia5CY3ucuh6CgMuhhdD2maYHSmI21E5u0tjGdzPjjwwWHsRvBGCE73y3azaRtBhI0m4hrPWCG1wVoCh3NWkrHcCosGFdoLVgiubY1AcMXKafrkcxSoeS_Y3Uv4Gd2uGkL-PYxflf9wh5x8NR2nHPZV6sOQU0ze5XQYrtlldLsplP-9YO-PD2_tU71-XT23y3WdhJG5lrxHQ1E56KW0nLz3GANQFB2AMDST05G8M8pxT1ZC1J53HaoYBAYDC3Z78qYQwvZ7THs3Hrenq_AHJmNFWA</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Hutchins, R.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>Neural network chaotic system identification</title><author>Hutchins, R.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-20d679f4a3d22809ccc6fe39f1b3317939fa5f9ca74a0c9823f5c0bb64fe16e73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Chaos</topic><topic>Equations</topic><topic>Feeds</topic><topic>Multi-layer neural network</topic><topic>Network topology</topic><topic>Neural networks</topic><topic>Nonlinear dynamical systems</topic><topic>Retina</topic><topic>Sampling methods</topic><topic>System identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Hutchins, R.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hutchins, R.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural network chaotic system identification</atitle><btitle>Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>1996</date><risdate>1996</risdate><spage>809</spage><epage>812 vol.2</epage><pages>809-812 vol.2</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9780818676468</isbn><isbn>0818676469</isbn><abstract>This research focuses on system identification using alternative neural network architectures, where the dynamics of the underlying system are chaotic. A neural network is trained on the measured input-output data of the actual system. The actual system model examined is based on the Lorenz equations for the chaotic attractor of the same name. For comparison, a quadratic system is also studied. In this research, both standard feedforward network architectures and recurrent network topologies proved inadequate to successfully identify the chaotic system, although the quadratic system was readily identified by both architectures. A radial basis network architecture was able to capture the qualitative behavior of the chaotic system on predictive data sets. However, the absolute error in the estimates remained high. Subsampling either produced no substantive improvement or led to impractical retina sizes.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.1996.599056</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1058-6393 |
ispartof | Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers, 1996, p.809-812 vol.2 |
issn | 1058-6393 2576-2303 |
language | eng |
recordid | cdi_ieee_primary_599056 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Chaos Equations Feeds Multi-layer neural network Network topology Neural networks Nonlinear dynamical systems Retina Sampling methods System identification |
title | Neural network chaotic system identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T00%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20network%20chaotic%20system%20identification&rft.btitle=Conference%20Record%20of%20The%20Thirtieth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Hutchins,%20R.G.&rft.date=1996&rft.spage=809&rft.epage=812%20vol.2&rft.pages=809-812%20vol.2&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9780818676468&rft.isbn_list=0818676469&rft_id=info:doi/10.1109/ACSSC.1996.599056&rft_dat=%3Cieee_6IE%3E599056%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=599056&rfr_iscdi=true |