Neural network chaotic system identification

This research focuses on system identification using alternative neural network architectures, where the dynamics of the underlying system are chaotic. A neural network is trained on the measured input-output data of the actual system. The actual system model examined is based on the Lorenz equation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hutchins, R.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 812 vol.2
container_issue
container_start_page 809
container_title
container_volume
creator Hutchins, R.G.
description This research focuses on system identification using alternative neural network architectures, where the dynamics of the underlying system are chaotic. A neural network is trained on the measured input-output data of the actual system. The actual system model examined is based on the Lorenz equations for the chaotic attractor of the same name. For comparison, a quadratic system is also studied. In this research, both standard feedforward network architectures and recurrent network topologies proved inadequate to successfully identify the chaotic system, although the quadratic system was readily identified by both architectures. A radial basis network architecture was able to capture the qualitative behavior of the chaotic system on predictive data sets. However, the absolute error in the estimates remained high. Subsampling either produced no substantive improvement or led to impractical retina sizes.
doi_str_mv 10.1109/ACSSC.1996.599056
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_599056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>599056</ieee_id><sourcerecordid>599056</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-20d679f4a3d22809ccc6fe39f1b3317939fa5f9ca74a0c9823f5c0bb64fe16e73</originalsourceid><addsrcrecordid>eNotj81KxDAUhYM_YBn7ALrqA9ia5CY3ucuh6CgMuhhdD2maYHSmI21E5u0tjGdzPjjwwWHsRvBGCE73y3azaRtBhI0m4hrPWCG1wVoCh3NWkrHcCosGFdoLVgiubY1AcMXKafrkcxSoeS_Y3Uv4Gd2uGkL-PYxflf9wh5x8NR2nHPZV6sOQU0ze5XQYrtlldLsplP-9YO-PD2_tU71-XT23y3WdhJG5lrxHQ1E56KW0nLz3GANQFB2AMDST05G8M8pxT1ZC1J53HaoYBAYDC3Z78qYQwvZ7THs3Hrenq_AHJmNFWA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural network chaotic system identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hutchins, R.G.</creator><creatorcontrib>Hutchins, R.G.</creatorcontrib><description>This research focuses on system identification using alternative neural network architectures, where the dynamics of the underlying system are chaotic. A neural network is trained on the measured input-output data of the actual system. The actual system model examined is based on the Lorenz equations for the chaotic attractor of the same name. For comparison, a quadratic system is also studied. In this research, both standard feedforward network architectures and recurrent network topologies proved inadequate to successfully identify the chaotic system, although the quadratic system was readily identified by both architectures. A radial basis network architecture was able to capture the qualitative behavior of the chaotic system on predictive data sets. However, the absolute error in the estimates remained high. Subsampling either produced no substantive improvement or led to impractical retina sizes.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9780818676468</identifier><identifier>ISBN: 0818676469</identifier><identifier>EISSN: 2576-2303</identifier><identifier>DOI: 10.1109/ACSSC.1996.599056</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chaos ; Equations ; Feeds ; Multi-layer neural network ; Network topology ; Neural networks ; Nonlinear dynamical systems ; Retina ; Sampling methods ; System identification</subject><ispartof>Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers, 1996, p.809-812 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/599056$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/599056$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hutchins, R.G.</creatorcontrib><title>Neural network chaotic system identification</title><title>Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>This research focuses on system identification using alternative neural network architectures, where the dynamics of the underlying system are chaotic. A neural network is trained on the measured input-output data of the actual system. The actual system model examined is based on the Lorenz equations for the chaotic attractor of the same name. For comparison, a quadratic system is also studied. In this research, both standard feedforward network architectures and recurrent network topologies proved inadequate to successfully identify the chaotic system, although the quadratic system was readily identified by both architectures. A radial basis network architecture was able to capture the qualitative behavior of the chaotic system on predictive data sets. However, the absolute error in the estimates remained high. Subsampling either produced no substantive improvement or led to impractical retina sizes.</description><subject>Chaos</subject><subject>Equations</subject><subject>Feeds</subject><subject>Multi-layer neural network</subject><subject>Network topology</subject><subject>Neural networks</subject><subject>Nonlinear dynamical systems</subject><subject>Retina</subject><subject>Sampling methods</subject><subject>System identification</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9780818676468</isbn><isbn>0818676469</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KxDAUhYM_YBn7ALrqA9ia5CY3ucuh6CgMuhhdD2maYHSmI21E5u0tjGdzPjjwwWHsRvBGCE73y3azaRtBhI0m4hrPWCG1wVoCh3NWkrHcCosGFdoLVgiubY1AcMXKafrkcxSoeS_Y3Uv4Gd2uGkL-PYxflf9wh5x8NR2nHPZV6sOQU0ze5XQYrtlldLsplP-9YO-PD2_tU71-XT23y3WdhJG5lrxHQ1E56KW0nLz3GANQFB2AMDST05G8M8pxT1ZC1J53HaoYBAYDC3Z78qYQwvZ7THs3Hrenq_AHJmNFWA</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Hutchins, R.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>Neural network chaotic system identification</title><author>Hutchins, R.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-20d679f4a3d22809ccc6fe39f1b3317939fa5f9ca74a0c9823f5c0bb64fe16e73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Chaos</topic><topic>Equations</topic><topic>Feeds</topic><topic>Multi-layer neural network</topic><topic>Network topology</topic><topic>Neural networks</topic><topic>Nonlinear dynamical systems</topic><topic>Retina</topic><topic>Sampling methods</topic><topic>System identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Hutchins, R.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hutchins, R.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural network chaotic system identification</atitle><btitle>Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>1996</date><risdate>1996</risdate><spage>809</spage><epage>812 vol.2</epage><pages>809-812 vol.2</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9780818676468</isbn><isbn>0818676469</isbn><abstract>This research focuses on system identification using alternative neural network architectures, where the dynamics of the underlying system are chaotic. A neural network is trained on the measured input-output data of the actual system. The actual system model examined is based on the Lorenz equations for the chaotic attractor of the same name. For comparison, a quadratic system is also studied. In this research, both standard feedforward network architectures and recurrent network topologies proved inadequate to successfully identify the chaotic system, although the quadratic system was readily identified by both architectures. A radial basis network architecture was able to capture the qualitative behavior of the chaotic system on predictive data sets. However, the absolute error in the estimates remained high. Subsampling either produced no substantive improvement or led to impractical retina sizes.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.1996.599056</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers, 1996, p.809-812 vol.2
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_599056
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Chaos
Equations
Feeds
Multi-layer neural network
Network topology
Neural networks
Nonlinear dynamical systems
Retina
Sampling methods
System identification
title Neural network chaotic system identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T00%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20network%20chaotic%20system%20identification&rft.btitle=Conference%20Record%20of%20The%20Thirtieth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Hutchins,%20R.G.&rft.date=1996&rft.spage=809&rft.epage=812%20vol.2&rft.pages=809-812%20vol.2&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9780818676468&rft.isbn_list=0818676469&rft_id=info:doi/10.1109/ACSSC.1996.599056&rft_dat=%3Cieee_6IE%3E599056%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=599056&rfr_iscdi=true