Radiometric correction of hyperspectral imaging data in spacial dimension and spectral dimension

Because sample are affected by light, lens and sensor in optical channel in hyperspectral imaging system, image quality and spectrums are also affected. The paper proposes the gray correction coefficient algorithm with spatial dimension and spectral dimension to preprocess molecular hyperspectral im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liu Hongying, Guan Yana, Li Qingli, Liu Jingao, Xue Yongqi
Format: Tagungsbericht
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4268
container_issue
container_start_page 4265
container_title
container_volume
creator Liu Hongying
Guan Yana
Li Qingli
Liu Jingao
Xue Yongqi
description Because sample are affected by light, lens and sensor in optical channel in hyperspectral imaging system, image quality and spectrums are also affected. The paper proposes the gray correction coefficient algorithm with spatial dimension and spectral dimension to preprocess molecular hyperspectral imaging data. The experimental results show that the algorithm can carry out radiometric correction in spatial dimension and spectral dimension and eliminate the effects of light, lens and sensor. Image quality is significantly improved. The spectrum curves indicating true biochemical characteristics of the sample are extracted that classification results based on spectral information are better than uncorrected sample.
doi_str_mv 10.1109/MACE.2011.5987946
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5987946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5987946</ieee_id><sourcerecordid>5987946</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4035dcc29aad0a9d878f79d47d949d34fb5a84fabfa2e8d2bb42ddededbc9a033</originalsourceid><addsrcrecordid>eNpFkNtKw0AQhldEUGsfQLzZF0jcU5KdyxLqASqC9L5OdjZ1pTmwm5u-vRFLnf9i-D9mhuFn7F6KXEoBj2-rep0rIWVegK3AlBfsVhplDBht4fLflOqaLVP6FnOVJYC0N-zzAykMnZ9icNwNMXo3haHnQ8u_jqOPaZxBxAMPHe5Dv-eEE_LQ8zSiCzOn0Pk-_a5gT_w8fsZ37KrFQ_LLU1-w7dN6W79km_fn13q1yQKIKTNCF-ScAkQSCGQr21ZApiIwQNq0TYHWtNi0qLwl1TRGEflZjQMUWi_Yw9_Z4L3fjXF-Nx53p0D0D2zoWAw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Radiometric correction of hyperspectral imaging data in spacial dimension and spectral dimension</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liu Hongying ; Guan Yana ; Li Qingli ; Liu Jingao ; Xue Yongqi</creator><creatorcontrib>Liu Hongying ; Guan Yana ; Li Qingli ; Liu Jingao ; Xue Yongqi</creatorcontrib><description>Because sample are affected by light, lens and sensor in optical channel in hyperspectral imaging system, image quality and spectrums are also affected. The paper proposes the gray correction coefficient algorithm with spatial dimension and spectral dimension to preprocess molecular hyperspectral imaging data. The experimental results show that the algorithm can carry out radiometric correction in spatial dimension and spectral dimension and eliminate the effects of light, lens and sensor. Image quality is significantly improved. The spectrum curves indicating true biochemical characteristics of the sample are extracted that classification results based on spectral information are better than uncorrected sample.</description><identifier>ISBN: 1424494362</identifier><identifier>ISBN: 9781424494361</identifier><identifier>EISBN: 1424494389</identifier><identifier>EISBN: 9781424494385</identifier><identifier>EISBN: 1424494397</identifier><identifier>EISBN: 9781424494392</identifier><identifier>DOI: 10.1109/MACE.2011.5987946</identifier><language>chi ; eng</language><publisher>IEEE</publisher><subject>Hyperspectral imaging ; Medical diagnostic imaging ; molecular hyperspctral imaging (MHSI) ; Optical filters ; radiometric correction ; Radiometry ; spectral angle mapper</subject><ispartof>2011 Second International Conference on Mechanic Automation and Control Engineering, 2011, p.4265-4268</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5987946$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5987946$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu Hongying</creatorcontrib><creatorcontrib>Guan Yana</creatorcontrib><creatorcontrib>Li Qingli</creatorcontrib><creatorcontrib>Liu Jingao</creatorcontrib><creatorcontrib>Xue Yongqi</creatorcontrib><title>Radiometric correction of hyperspectral imaging data in spacial dimension and spectral dimension</title><title>2011 Second International Conference on Mechanic Automation and Control Engineering</title><addtitle>MACE</addtitle><description>Because sample are affected by light, lens and sensor in optical channel in hyperspectral imaging system, image quality and spectrums are also affected. The paper proposes the gray correction coefficient algorithm with spatial dimension and spectral dimension to preprocess molecular hyperspectral imaging data. The experimental results show that the algorithm can carry out radiometric correction in spatial dimension and spectral dimension and eliminate the effects of light, lens and sensor. Image quality is significantly improved. The spectrum curves indicating true biochemical characteristics of the sample are extracted that classification results based on spectral information are better than uncorrected sample.</description><subject>Hyperspectral imaging</subject><subject>Medical diagnostic imaging</subject><subject>molecular hyperspctral imaging (MHSI)</subject><subject>Optical filters</subject><subject>radiometric correction</subject><subject>Radiometry</subject><subject>spectral angle mapper</subject><isbn>1424494362</isbn><isbn>9781424494361</isbn><isbn>1424494389</isbn><isbn>9781424494385</isbn><isbn>1424494397</isbn><isbn>9781424494392</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkNtKw0AQhldEUGsfQLzZF0jcU5KdyxLqASqC9L5OdjZ1pTmwm5u-vRFLnf9i-D9mhuFn7F6KXEoBj2-rep0rIWVegK3AlBfsVhplDBht4fLflOqaLVP6FnOVJYC0N-zzAykMnZ9icNwNMXo3haHnQ8u_jqOPaZxBxAMPHe5Dv-eEE_LQ8zSiCzOn0Pk-_a5gT_w8fsZ37KrFQ_LLU1-w7dN6W79km_fn13q1yQKIKTNCF-ScAkQSCGQr21ZApiIwQNq0TYHWtNi0qLwl1TRGEflZjQMUWi_Yw9_Z4L3fjXF-Nx53p0D0D2zoWAw</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Liu Hongying</creator><creator>Guan Yana</creator><creator>Li Qingli</creator><creator>Liu Jingao</creator><creator>Xue Yongqi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>Radiometric correction of hyperspectral imaging data in spacial dimension and spectral dimension</title><author>Liu Hongying ; Guan Yana ; Li Qingli ; Liu Jingao ; Xue Yongqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4035dcc29aad0a9d878f79d47d949d34fb5a84fabfa2e8d2bb42ddededbc9a033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>chi ; eng</language><creationdate>2011</creationdate><topic>Hyperspectral imaging</topic><topic>Medical diagnostic imaging</topic><topic>molecular hyperspctral imaging (MHSI)</topic><topic>Optical filters</topic><topic>radiometric correction</topic><topic>Radiometry</topic><topic>spectral angle mapper</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu Hongying</creatorcontrib><creatorcontrib>Guan Yana</creatorcontrib><creatorcontrib>Li Qingli</creatorcontrib><creatorcontrib>Liu Jingao</creatorcontrib><creatorcontrib>Xue Yongqi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu Hongying</au><au>Guan Yana</au><au>Li Qingli</au><au>Liu Jingao</au><au>Xue Yongqi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Radiometric correction of hyperspectral imaging data in spacial dimension and spectral dimension</atitle><btitle>2011 Second International Conference on Mechanic Automation and Control Engineering</btitle><stitle>MACE</stitle><date>2011-07</date><risdate>2011</risdate><spage>4265</spage><epage>4268</epage><pages>4265-4268</pages><isbn>1424494362</isbn><isbn>9781424494361</isbn><eisbn>1424494389</eisbn><eisbn>9781424494385</eisbn><eisbn>1424494397</eisbn><eisbn>9781424494392</eisbn><abstract>Because sample are affected by light, lens and sensor in optical channel in hyperspectral imaging system, image quality and spectrums are also affected. The paper proposes the gray correction coefficient algorithm with spatial dimension and spectral dimension to preprocess molecular hyperspectral imaging data. The experimental results show that the algorithm can carry out radiometric correction in spatial dimension and spectral dimension and eliminate the effects of light, lens and sensor. Image quality is significantly improved. The spectrum curves indicating true biochemical characteristics of the sample are extracted that classification results based on spectral information are better than uncorrected sample.</abstract><pub>IEEE</pub><doi>10.1109/MACE.2011.5987946</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424494362
ispartof 2011 Second International Conference on Mechanic Automation and Control Engineering, 2011, p.4265-4268
issn
language chi ; eng
recordid cdi_ieee_primary_5987946
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Hyperspectral imaging
Medical diagnostic imaging
molecular hyperspctral imaging (MHSI)
Optical filters
radiometric correction
Radiometry
spectral angle mapper
title Radiometric correction of hyperspectral imaging data in spacial dimension and spectral dimension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Radiometric%20correction%20of%20hyperspectral%20imaging%20data%20in%20spacial%20dimension%20and%20spectral%20dimension&rft.btitle=2011%20Second%20International%20Conference%20on%20Mechanic%20Automation%20and%20Control%20Engineering&rft.au=Liu%20Hongying&rft.date=2011-07&rft.spage=4265&rft.epage=4268&rft.pages=4265-4268&rft.isbn=1424494362&rft.isbn_list=9781424494361&rft_id=info:doi/10.1109/MACE.2011.5987946&rft_dat=%3Cieee_6IE%3E5987946%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424494389&rft.eisbn_list=9781424494385&rft.eisbn_list=1424494397&rft.eisbn_list=9781424494392&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5987946&rfr_iscdi=true