Delay-dependent stability analysis for time-delay systems with uncertain parameters
This paper deals with the problem of the asymptotical stability for a class of linear systems with multiple time-delays. Using Lyapunov-Razumikhin theorem and the concept of matrix norm, the sufficient conditions of delay-independent stability and delay-dependent stability are derived to ensure that...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 960 |
---|---|
container_issue | |
container_start_page | 956 |
container_title | |
container_volume | |
creator | Yanhui Ai Changhui Song Xi Gong Zongyong Tang Zuoqiong Zhang |
description | This paper deals with the problem of the asymptotical stability for a class of linear systems with multiple time-delays. Using Lyapunov-Razumikhin theorem and the concept of matrix norm, the sufficient conditions of delay-independent stability and delay-dependent stability are derived to ensure that the linear systems with multiple time-delays are asymptotically stable. By comparing with the present theorem, it is obvious that the stability theorem in this paper could deal with the linear systems with constant delay and time-varying delay. Last, an example is given to illustrate that the new method is more effective than the present method and the delay bound obtained in this paper is of less conservative. |
doi_str_mv | 10.1109/ICMA.2011.5985789 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5985789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5985789</ieee_id><sourcerecordid>5985789</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8ca06436fb7941bededd23b53c8a997f2922b415446147e5e8fc28ae7f20b6b63</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRc1LopR-AGLjH0jw-7GsQoFKRSzogl1lJxNhlITINkL5eyJRmM0sztHVzEXohpKSUmLvttXzumSE0lJaI7WxJ-iKCiaEoVToU7RgVLJCC_F2hlZWmz_G2fk_4_QSrVL6IPMoZS1jC_R6D52bigZGGBoYMk7Z-dCFPGE3uG5KIeH2M-Icepit2cVpShn6hL9DfsdfQw0xuzDg0UXXQ4aYrtFF67oEq-Neov3DZl89FbuXx2213hXBklyY2hEluGq9toJ6aKBpGPeS18ZZq1s23-cFlUKo-UOQYNqaGQczIV55xZfo9jc2AMBhjKF3cToc6-E_f1JWHw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Delay-dependent stability analysis for time-delay systems with uncertain parameters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yanhui Ai ; Changhui Song ; Xi Gong ; Zongyong Tang ; Zuoqiong Zhang</creator><creatorcontrib>Yanhui Ai ; Changhui Song ; Xi Gong ; Zongyong Tang ; Zuoqiong Zhang</creatorcontrib><description>This paper deals with the problem of the asymptotical stability for a class of linear systems with multiple time-delays. Using Lyapunov-Razumikhin theorem and the concept of matrix norm, the sufficient conditions of delay-independent stability and delay-dependent stability are derived to ensure that the linear systems with multiple time-delays are asymptotically stable. By comparing with the present theorem, it is obvious that the stability theorem in this paper could deal with the linear systems with constant delay and time-varying delay. Last, an example is given to illustrate that the new method is more effective than the present method and the delay bound obtained in this paper is of less conservative.</description><identifier>ISSN: 2152-7431</identifier><identifier>ISBN: 9781424481132</identifier><identifier>ISBN: 1424481139</identifier><identifier>EISSN: 2152-744X</identifier><identifier>EISBN: 1424481147</identifier><identifier>EISBN: 9781424481149</identifier><identifier>EISBN: 1424481155</identifier><identifier>EISBN: 9781424481156</identifier><identifier>DOI: 10.1109/ICMA.2011.5985789</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asymptotic stability ; asymptotical stability ; Delay effects ; delay-dependent ; delay-independent ; Linear systems ; Power system stability ; Stability criteria ; Symmetric matrices</subject><ispartof>2011 IEEE International Conference on Mechatronics and Automation, 2011, p.956-960</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5985789$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5985789$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yanhui Ai</creatorcontrib><creatorcontrib>Changhui Song</creatorcontrib><creatorcontrib>Xi Gong</creatorcontrib><creatorcontrib>Zongyong Tang</creatorcontrib><creatorcontrib>Zuoqiong Zhang</creatorcontrib><title>Delay-dependent stability analysis for time-delay systems with uncertain parameters</title><title>2011 IEEE International Conference on Mechatronics and Automation</title><addtitle>ICMA</addtitle><description>This paper deals with the problem of the asymptotical stability for a class of linear systems with multiple time-delays. Using Lyapunov-Razumikhin theorem and the concept of matrix norm, the sufficient conditions of delay-independent stability and delay-dependent stability are derived to ensure that the linear systems with multiple time-delays are asymptotically stable. By comparing with the present theorem, it is obvious that the stability theorem in this paper could deal with the linear systems with constant delay and time-varying delay. Last, an example is given to illustrate that the new method is more effective than the present method and the delay bound obtained in this paper is of less conservative.</description><subject>Asymptotic stability</subject><subject>asymptotical stability</subject><subject>Delay effects</subject><subject>delay-dependent</subject><subject>delay-independent</subject><subject>Linear systems</subject><subject>Power system stability</subject><subject>Stability criteria</subject><subject>Symmetric matrices</subject><issn>2152-7431</issn><issn>2152-744X</issn><isbn>9781424481132</isbn><isbn>1424481139</isbn><isbn>1424481147</isbn><isbn>9781424481149</isbn><isbn>1424481155</isbn><isbn>9781424481156</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRc1LopR-AGLjH0jw-7GsQoFKRSzogl1lJxNhlITINkL5eyJRmM0sztHVzEXohpKSUmLvttXzumSE0lJaI7WxJ-iKCiaEoVToU7RgVLJCC_F2hlZWmz_G2fk_4_QSrVL6IPMoZS1jC_R6D52bigZGGBoYMk7Z-dCFPGE3uG5KIeH2M-Icepit2cVpShn6hL9DfsdfQw0xuzDg0UXXQ4aYrtFF67oEq-Neov3DZl89FbuXx2213hXBklyY2hEluGq9toJ6aKBpGPeS18ZZq1s23-cFlUKo-UOQYNqaGQczIV55xZfo9jc2AMBhjKF3cToc6-E_f1JWHw</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Yanhui Ai</creator><creator>Changhui Song</creator><creator>Xi Gong</creator><creator>Zongyong Tang</creator><creator>Zuoqiong Zhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201108</creationdate><title>Delay-dependent stability analysis for time-delay systems with uncertain parameters</title><author>Yanhui Ai ; Changhui Song ; Xi Gong ; Zongyong Tang ; Zuoqiong Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8ca06436fb7941bededd23b53c8a997f2922b415446147e5e8fc28ae7f20b6b63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Asymptotic stability</topic><topic>asymptotical stability</topic><topic>Delay effects</topic><topic>delay-dependent</topic><topic>delay-independent</topic><topic>Linear systems</topic><topic>Power system stability</topic><topic>Stability criteria</topic><topic>Symmetric matrices</topic><toplevel>online_resources</toplevel><creatorcontrib>Yanhui Ai</creatorcontrib><creatorcontrib>Changhui Song</creatorcontrib><creatorcontrib>Xi Gong</creatorcontrib><creatorcontrib>Zongyong Tang</creatorcontrib><creatorcontrib>Zuoqiong Zhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yanhui Ai</au><au>Changhui Song</au><au>Xi Gong</au><au>Zongyong Tang</au><au>Zuoqiong Zhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Delay-dependent stability analysis for time-delay systems with uncertain parameters</atitle><btitle>2011 IEEE International Conference on Mechatronics and Automation</btitle><stitle>ICMA</stitle><date>2011-08</date><risdate>2011</risdate><spage>956</spage><epage>960</epage><pages>956-960</pages><issn>2152-7431</issn><eissn>2152-744X</eissn><isbn>9781424481132</isbn><isbn>1424481139</isbn><eisbn>1424481147</eisbn><eisbn>9781424481149</eisbn><eisbn>1424481155</eisbn><eisbn>9781424481156</eisbn><abstract>This paper deals with the problem of the asymptotical stability for a class of linear systems with multiple time-delays. Using Lyapunov-Razumikhin theorem and the concept of matrix norm, the sufficient conditions of delay-independent stability and delay-dependent stability are derived to ensure that the linear systems with multiple time-delays are asymptotically stable. By comparing with the present theorem, it is obvious that the stability theorem in this paper could deal with the linear systems with constant delay and time-varying delay. Last, an example is given to illustrate that the new method is more effective than the present method and the delay bound obtained in this paper is of less conservative.</abstract><pub>IEEE</pub><doi>10.1109/ICMA.2011.5985789</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2152-7431 |
ispartof | 2011 IEEE International Conference on Mechatronics and Automation, 2011, p.956-960 |
issn | 2152-7431 2152-744X |
language | eng |
recordid | cdi_ieee_primary_5985789 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Asymptotic stability asymptotical stability Delay effects delay-dependent delay-independent Linear systems Power system stability Stability criteria Symmetric matrices |
title | Delay-dependent stability analysis for time-delay systems with uncertain parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Delay-dependent%20stability%20analysis%20for%20time-delay%20systems%20with%20uncertain%20parameters&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Mechatronics%20and%20Automation&rft.au=Yanhui%20Ai&rft.date=2011-08&rft.spage=956&rft.epage=960&rft.pages=956-960&rft.issn=2152-7431&rft.eissn=2152-744X&rft.isbn=9781424481132&rft.isbn_list=1424481139&rft_id=info:doi/10.1109/ICMA.2011.5985789&rft_dat=%3Cieee_6IE%3E5985789%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424481147&rft.eisbn_list=9781424481149&rft.eisbn_list=1424481155&rft.eisbn_list=9781424481156&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5985789&rfr_iscdi=true |