Delay-dependent stability analysis for time-delay systems with uncertain parameters

This paper deals with the problem of the asymptotical stability for a class of linear systems with multiple time-delays. Using Lyapunov-Razumikhin theorem and the concept of matrix norm, the sufficient conditions of delay-independent stability and delay-dependent stability are derived to ensure that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yanhui Ai, Changhui Song, Xi Gong, Zongyong Tang, Zuoqiong Zhang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 960
container_issue
container_start_page 956
container_title
container_volume
creator Yanhui Ai
Changhui Song
Xi Gong
Zongyong Tang
Zuoqiong Zhang
description This paper deals with the problem of the asymptotical stability for a class of linear systems with multiple time-delays. Using Lyapunov-Razumikhin theorem and the concept of matrix norm, the sufficient conditions of delay-independent stability and delay-dependent stability are derived to ensure that the linear systems with multiple time-delays are asymptotically stable. By comparing with the present theorem, it is obvious that the stability theorem in this paper could deal with the linear systems with constant delay and time-varying delay. Last, an example is given to illustrate that the new method is more effective than the present method and the delay bound obtained in this paper is of less conservative.
doi_str_mv 10.1109/ICMA.2011.5985789
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5985789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5985789</ieee_id><sourcerecordid>5985789</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8ca06436fb7941bededd23b53c8a997f2922b415446147e5e8fc28ae7f20b6b63</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRc1LopR-AGLjH0jw-7GsQoFKRSzogl1lJxNhlITINkL5eyJRmM0sztHVzEXohpKSUmLvttXzumSE0lJaI7WxJ-iKCiaEoVToU7RgVLJCC_F2hlZWmz_G2fk_4_QSrVL6IPMoZS1jC_R6D52bigZGGBoYMk7Z-dCFPGE3uG5KIeH2M-Icepit2cVpShn6hL9DfsdfQw0xuzDg0UXXQ4aYrtFF67oEq-Neov3DZl89FbuXx2213hXBklyY2hEluGq9toJ6aKBpGPeS18ZZq1s23-cFlUKo-UOQYNqaGQczIV55xZfo9jc2AMBhjKF3cToc6-E_f1JWHw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Delay-dependent stability analysis for time-delay systems with uncertain parameters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yanhui Ai ; Changhui Song ; Xi Gong ; Zongyong Tang ; Zuoqiong Zhang</creator><creatorcontrib>Yanhui Ai ; Changhui Song ; Xi Gong ; Zongyong Tang ; Zuoqiong Zhang</creatorcontrib><description>This paper deals with the problem of the asymptotical stability for a class of linear systems with multiple time-delays. Using Lyapunov-Razumikhin theorem and the concept of matrix norm, the sufficient conditions of delay-independent stability and delay-dependent stability are derived to ensure that the linear systems with multiple time-delays are asymptotically stable. By comparing with the present theorem, it is obvious that the stability theorem in this paper could deal with the linear systems with constant delay and time-varying delay. Last, an example is given to illustrate that the new method is more effective than the present method and the delay bound obtained in this paper is of less conservative.</description><identifier>ISSN: 2152-7431</identifier><identifier>ISBN: 9781424481132</identifier><identifier>ISBN: 1424481139</identifier><identifier>EISSN: 2152-744X</identifier><identifier>EISBN: 1424481147</identifier><identifier>EISBN: 9781424481149</identifier><identifier>EISBN: 1424481155</identifier><identifier>EISBN: 9781424481156</identifier><identifier>DOI: 10.1109/ICMA.2011.5985789</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asymptotic stability ; asymptotical stability ; Delay effects ; delay-dependent ; delay-independent ; Linear systems ; Power system stability ; Stability criteria ; Symmetric matrices</subject><ispartof>2011 IEEE International Conference on Mechatronics and Automation, 2011, p.956-960</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5985789$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5985789$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yanhui Ai</creatorcontrib><creatorcontrib>Changhui Song</creatorcontrib><creatorcontrib>Xi Gong</creatorcontrib><creatorcontrib>Zongyong Tang</creatorcontrib><creatorcontrib>Zuoqiong Zhang</creatorcontrib><title>Delay-dependent stability analysis for time-delay systems with uncertain parameters</title><title>2011 IEEE International Conference on Mechatronics and Automation</title><addtitle>ICMA</addtitle><description>This paper deals with the problem of the asymptotical stability for a class of linear systems with multiple time-delays. Using Lyapunov-Razumikhin theorem and the concept of matrix norm, the sufficient conditions of delay-independent stability and delay-dependent stability are derived to ensure that the linear systems with multiple time-delays are asymptotically stable. By comparing with the present theorem, it is obvious that the stability theorem in this paper could deal with the linear systems with constant delay and time-varying delay. Last, an example is given to illustrate that the new method is more effective than the present method and the delay bound obtained in this paper is of less conservative.</description><subject>Asymptotic stability</subject><subject>asymptotical stability</subject><subject>Delay effects</subject><subject>delay-dependent</subject><subject>delay-independent</subject><subject>Linear systems</subject><subject>Power system stability</subject><subject>Stability criteria</subject><subject>Symmetric matrices</subject><issn>2152-7431</issn><issn>2152-744X</issn><isbn>9781424481132</isbn><isbn>1424481139</isbn><isbn>1424481147</isbn><isbn>9781424481149</isbn><isbn>1424481155</isbn><isbn>9781424481156</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRc1LopR-AGLjH0jw-7GsQoFKRSzogl1lJxNhlITINkL5eyJRmM0sztHVzEXohpKSUmLvttXzumSE0lJaI7WxJ-iKCiaEoVToU7RgVLJCC_F2hlZWmz_G2fk_4_QSrVL6IPMoZS1jC_R6D52bigZGGBoYMk7Z-dCFPGE3uG5KIeH2M-Icepit2cVpShn6hL9DfsdfQw0xuzDg0UXXQ4aYrtFF67oEq-Neov3DZl89FbuXx2213hXBklyY2hEluGq9toJ6aKBpGPeS18ZZq1s23-cFlUKo-UOQYNqaGQczIV55xZfo9jc2AMBhjKF3cToc6-E_f1JWHw</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Yanhui Ai</creator><creator>Changhui Song</creator><creator>Xi Gong</creator><creator>Zongyong Tang</creator><creator>Zuoqiong Zhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201108</creationdate><title>Delay-dependent stability analysis for time-delay systems with uncertain parameters</title><author>Yanhui Ai ; Changhui Song ; Xi Gong ; Zongyong Tang ; Zuoqiong Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8ca06436fb7941bededd23b53c8a997f2922b415446147e5e8fc28ae7f20b6b63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Asymptotic stability</topic><topic>asymptotical stability</topic><topic>Delay effects</topic><topic>delay-dependent</topic><topic>delay-independent</topic><topic>Linear systems</topic><topic>Power system stability</topic><topic>Stability criteria</topic><topic>Symmetric matrices</topic><toplevel>online_resources</toplevel><creatorcontrib>Yanhui Ai</creatorcontrib><creatorcontrib>Changhui Song</creatorcontrib><creatorcontrib>Xi Gong</creatorcontrib><creatorcontrib>Zongyong Tang</creatorcontrib><creatorcontrib>Zuoqiong Zhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yanhui Ai</au><au>Changhui Song</au><au>Xi Gong</au><au>Zongyong Tang</au><au>Zuoqiong Zhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Delay-dependent stability analysis for time-delay systems with uncertain parameters</atitle><btitle>2011 IEEE International Conference on Mechatronics and Automation</btitle><stitle>ICMA</stitle><date>2011-08</date><risdate>2011</risdate><spage>956</spage><epage>960</epage><pages>956-960</pages><issn>2152-7431</issn><eissn>2152-744X</eissn><isbn>9781424481132</isbn><isbn>1424481139</isbn><eisbn>1424481147</eisbn><eisbn>9781424481149</eisbn><eisbn>1424481155</eisbn><eisbn>9781424481156</eisbn><abstract>This paper deals with the problem of the asymptotical stability for a class of linear systems with multiple time-delays. Using Lyapunov-Razumikhin theorem and the concept of matrix norm, the sufficient conditions of delay-independent stability and delay-dependent stability are derived to ensure that the linear systems with multiple time-delays are asymptotically stable. By comparing with the present theorem, it is obvious that the stability theorem in this paper could deal with the linear systems with constant delay and time-varying delay. Last, an example is given to illustrate that the new method is more effective than the present method and the delay bound obtained in this paper is of less conservative.</abstract><pub>IEEE</pub><doi>10.1109/ICMA.2011.5985789</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2152-7431
ispartof 2011 IEEE International Conference on Mechatronics and Automation, 2011, p.956-960
issn 2152-7431
2152-744X
language eng
recordid cdi_ieee_primary_5985789
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Asymptotic stability
asymptotical stability
Delay effects
delay-dependent
delay-independent
Linear systems
Power system stability
Stability criteria
Symmetric matrices
title Delay-dependent stability analysis for time-delay systems with uncertain parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Delay-dependent%20stability%20analysis%20for%20time-delay%20systems%20with%20uncertain%20parameters&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Mechatronics%20and%20Automation&rft.au=Yanhui%20Ai&rft.date=2011-08&rft.spage=956&rft.epage=960&rft.pages=956-960&rft.issn=2152-7431&rft.eissn=2152-744X&rft.isbn=9781424481132&rft.isbn_list=1424481139&rft_id=info:doi/10.1109/ICMA.2011.5985789&rft_dat=%3Cieee_6IE%3E5985789%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424481147&rft.eisbn_list=9781424481149&rft.eisbn_list=1424481155&rft.eisbn_list=9781424481156&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5985789&rfr_iscdi=true