Eigenfaces vs. Fisherfaces: recognition using class specific linear projection
We develop a face recognition algorithm which is insensitive to large variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 1997-07, Vol.19 (7), p.711-720 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 720 |
---|---|
container_issue | 7 |
container_start_page | 711 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 19 |
creator | Belhumeur, P.N. Hespanha, J.P. Kriegman, D.J. |
description | We develop a face recognition algorithm which is insensitive to large variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images of a particular face, under varying illumination but fixed pose, lie in a 3D linear subspace of the high dimensional image space-if the face is a Lambertian surface without shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce self-shadowing, images will deviate from this linear subspace. Rather than explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fisher's linear discriminant and produces well separated classes in a low-dimensional subspace, even under severe variation in lighting and facial expressions. The eigenface technique, another method based on linearly projecting the image space to a low dimensional subspace, has similar computational requirements. Yet, extensive experimental results demonstrate that the proposed "Fisherface" method has error rates that are lower than those of the eigenface technique for tests on the Harvard and Yale face databases. |
doi_str_mv | 10.1109/34.598228 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_598228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>598228</ieee_id><sourcerecordid>28307979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-1f1debcfead48ae7772885c2b295127d1e86f5c1050f0fb9f2591310b5fcfca93</originalsourceid><addsrcrecordid>eNo90EFLAzEQBeAgCtbqwaunnAQPWzPJpkm8SWlVKHrR85JNJzVlu1szreC_t3WLp2GYjzfwGLsGMQIQ7l6VI-2slPaEDcApVyit3CkbCBjLwlppz9kF0UoIKLVQA_Y6TUtsow9I_JtGfJboE_Pf_sAzhm7Zpm3qWr6j1C55aDwRpw2GFFPgTWrRZ77J3QrDgV2ys-gbwqvjHLKP2fR98lzM355eJo_zIkhjtgVEWGAdIvpFaT0aY6S1OshaOg3SLADtOOoAQosoYu2i1A4UiFrHEIN3ashu-9z9668d0rZaJwrYNL7FbkeVtEoYZw7wrochd0QZY7XJae3zTwWiOjRWqbLqG9vbm94mRPx3x-Mv9GBnBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28307979</pqid></control><display><type>article</type><title>Eigenfaces vs. Fisherfaces: recognition using class specific linear projection</title><source>IEEE Electronic Library (IEL)</source><creator>Belhumeur, P.N. ; Hespanha, J.P. ; Kriegman, D.J.</creator><creatorcontrib>Belhumeur, P.N. ; Hespanha, J.P. ; Kriegman, D.J.</creatorcontrib><description>We develop a face recognition algorithm which is insensitive to large variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images of a particular face, under varying illumination but fixed pose, lie in a 3D linear subspace of the high dimensional image space-if the face is a Lambertian surface without shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce self-shadowing, images will deviate from this linear subspace. Rather than explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fisher's linear discriminant and produces well separated classes in a low-dimensional subspace, even under severe variation in lighting and facial expressions. The eigenface technique, another method based on linearly projecting the image space to a low dimensional subspace, has similar computational requirements. Yet, extensive experimental results demonstrate that the proposed "Fisherface" method has error rates that are lower than those of the eigenface technique for tests on the Harvard and Yale face databases.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.598228</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Error analysis ; Face detection ; Face recognition ; Light scattering ; Light sources ; Lighting ; Pattern classification ; Pixel ; Principal component analysis ; Shadow mapping</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1997-07, Vol.19 (7), p.711-720</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-1f1debcfead48ae7772885c2b295127d1e86f5c1050f0fb9f2591310b5fcfca93</citedby><cites>FETCH-LOGICAL-c277t-1f1debcfead48ae7772885c2b295127d1e86f5c1050f0fb9f2591310b5fcfca93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/598228$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/598228$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Belhumeur, P.N.</creatorcontrib><creatorcontrib>Hespanha, J.P.</creatorcontrib><creatorcontrib>Kriegman, D.J.</creatorcontrib><title>Eigenfaces vs. Fisherfaces: recognition using class specific linear projection</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>We develop a face recognition algorithm which is insensitive to large variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images of a particular face, under varying illumination but fixed pose, lie in a 3D linear subspace of the high dimensional image space-if the face is a Lambertian surface without shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce self-shadowing, images will deviate from this linear subspace. Rather than explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fisher's linear discriminant and produces well separated classes in a low-dimensional subspace, even under severe variation in lighting and facial expressions. The eigenface technique, another method based on linearly projecting the image space to a low dimensional subspace, has similar computational requirements. Yet, extensive experimental results demonstrate that the proposed "Fisherface" method has error rates that are lower than those of the eigenface technique for tests on the Harvard and Yale face databases.</description><subject>Error analysis</subject><subject>Face detection</subject><subject>Face recognition</subject><subject>Light scattering</subject><subject>Light sources</subject><subject>Lighting</subject><subject>Pattern classification</subject><subject>Pixel</subject><subject>Principal component analysis</subject><subject>Shadow mapping</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNo90EFLAzEQBeAgCtbqwaunnAQPWzPJpkm8SWlVKHrR85JNJzVlu1szreC_t3WLp2GYjzfwGLsGMQIQ7l6VI-2slPaEDcApVyit3CkbCBjLwlppz9kF0UoIKLVQA_Y6TUtsow9I_JtGfJboE_Pf_sAzhm7Zpm3qWr6j1C55aDwRpw2GFFPgTWrRZ77J3QrDgV2ys-gbwqvjHLKP2fR98lzM355eJo_zIkhjtgVEWGAdIvpFaT0aY6S1OshaOg3SLADtOOoAQosoYu2i1A4UiFrHEIN3ashu-9z9668d0rZaJwrYNL7FbkeVtEoYZw7wrochd0QZY7XJae3zTwWiOjRWqbLqG9vbm94mRPx3x-Mv9GBnBg</recordid><startdate>19970701</startdate><enddate>19970701</enddate><creator>Belhumeur, P.N.</creator><creator>Hespanha, J.P.</creator><creator>Kriegman, D.J.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19970701</creationdate><title>Eigenfaces vs. Fisherfaces: recognition using class specific linear projection</title><author>Belhumeur, P.N. ; Hespanha, J.P. ; Kriegman, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-1f1debcfead48ae7772885c2b295127d1e86f5c1050f0fb9f2591310b5fcfca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Error analysis</topic><topic>Face detection</topic><topic>Face recognition</topic><topic>Light scattering</topic><topic>Light sources</topic><topic>Lighting</topic><topic>Pattern classification</topic><topic>Pixel</topic><topic>Principal component analysis</topic><topic>Shadow mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belhumeur, P.N.</creatorcontrib><creatorcontrib>Hespanha, J.P.</creatorcontrib><creatorcontrib>Kriegman, D.J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Belhumeur, P.N.</au><au>Hespanha, J.P.</au><au>Kriegman, D.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenfaces vs. Fisherfaces: recognition using class specific linear projection</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1997-07-01</date><risdate>1997</risdate><volume>19</volume><issue>7</issue><spage>711</spage><epage>720</epage><pages>711-720</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>We develop a face recognition algorithm which is insensitive to large variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images of a particular face, under varying illumination but fixed pose, lie in a 3D linear subspace of the high dimensional image space-if the face is a Lambertian surface without shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce self-shadowing, images will deviate from this linear subspace. Rather than explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fisher's linear discriminant and produces well separated classes in a low-dimensional subspace, even under severe variation in lighting and facial expressions. The eigenface technique, another method based on linearly projecting the image space to a low dimensional subspace, has similar computational requirements. Yet, extensive experimental results demonstrate that the proposed "Fisherface" method has error rates that are lower than those of the eigenface technique for tests on the Harvard and Yale face databases.</abstract><pub>IEEE</pub><doi>10.1109/34.598228</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 1997-07, Vol.19 (7), p.711-720 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_ieee_primary_598228 |
source | IEEE Electronic Library (IEL) |
subjects | Error analysis Face detection Face recognition Light scattering Light sources Lighting Pattern classification Pixel Principal component analysis Shadow mapping |
title | Eigenfaces vs. Fisherfaces: recognition using class specific linear projection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A43%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenfaces%20vs.%20Fisherfaces:%20recognition%20using%20class%20specific%20linear%20projection&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Belhumeur,%20P.N.&rft.date=1997-07-01&rft.volume=19&rft.issue=7&rft.spage=711&rft.epage=720&rft.pages=711-720&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.598228&rft_dat=%3Cproquest_RIE%3E28307979%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28307979&rft_id=info:pmid/&rft_ieee_id=598228&rfr_iscdi=true |