Human arm motion modeling and long-term prediction for safe and efficient Human-Robot-Interaction

Modeling and predicting human behavior is indispensable when industrial robots interacting with human operators are to be manipulated safely and efficiently. One challenge is that human operators tend to follow different motion patterns, depending on their intention and the structure of the environm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hao Ding, Reissig, G., Wijaya, K., Bortot, D., Bengler, K., Stursberg, O.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5880
container_issue
container_start_page 5875
container_title
container_volume
creator Hao Ding
Reissig, G.
Wijaya, K.
Bortot, D.
Bengler, K.
Stursberg, O.
description Modeling and predicting human behavior is indispensable when industrial robots interacting with human operators are to be manipulated safely and efficiently. One challenge is that human operators tend to follow different motion patterns, depending on their intention and the structure of the environment. This precludes the use of classical estimation techniques based on kinematic or dynamic models, especially for the purpose of long-term prediction. In this paper, we propose a method based on Hidden Markov Models to predict the region of the workspace that is possibly occupied by the human within a prediction horizon. In contrast to predictions in the form of single points such as most likely human positions as obtained from previous approaches, the regions obtained here may serve as safety constraints when the robot motion is planned or optimized. This way one avoids collisions with a probability not less than a predefined threshold. The practicability of our method is demonstrated by successfully and accurately predicting the motion of a human arm in two scenarios involving multiple motion patterns.
doi_str_mv 10.1109/ICRA.2011.5980248
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5980248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5980248</ieee_id><sourcerecordid>5980248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-d6464d2ea3b2f694fde6349dda1b4cdf6f90e06044c2a2b49190b039c2f9ee7a3</originalsourceid><addsrcrecordid>eNo1kM1OwzAQhM2fRCl9AMQlL-Bgbxzbe6wqoJUqIVUgcauceF0ZNU6VhANvTxTKXOYw38xhGHuQIpdS4NNmtVvmIKTMS7QClL1gd1JLsKqwJV6yGZTGcGHN5xVboLH_mS6v2UyKUnBlAG_Zou-_xCit0QDMmFt_Ny5lrmuyph1im0bzdIzpkLnks2ObDnygMT115GM9EaHtst4FmggKIdaR0pBNS3zXVu3AN2ksuQm_ZzfBHXtanH3OPl6e31drvn173ayWW16DxYF7rbTyQK6oIGhUwZMuFHrvZKVqH3RAQUILpWpwUCmUKCpRYA0BiYwr5uzxbzcS0f7UxcZ1P_vzW8Uv05Na9g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Human arm motion modeling and long-term prediction for safe and efficient Human-Robot-Interaction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hao Ding ; Reissig, G. ; Wijaya, K. ; Bortot, D. ; Bengler, K. ; Stursberg, O.</creator><creatorcontrib>Hao Ding ; Reissig, G. ; Wijaya, K. ; Bortot, D. ; Bengler, K. ; Stursberg, O.</creatorcontrib><description>Modeling and predicting human behavior is indispensable when industrial robots interacting with human operators are to be manipulated safely and efficiently. One challenge is that human operators tend to follow different motion patterns, depending on their intention and the structure of the environment. This precludes the use of classical estimation techniques based on kinematic or dynamic models, especially for the purpose of long-term prediction. In this paper, we propose a method based on Hidden Markov Models to predict the region of the workspace that is possibly occupied by the human within a prediction horizon. In contrast to predictions in the form of single points such as most likely human positions as obtained from previous approaches, the regions obtained here may serve as safety constraints when the robot motion is planned or optimized. This way one avoids collisions with a probability not less than a predefined threshold. The practicability of our method is demonstrated by successfully and accurately predicting the motion of a human arm in two scenarios involving multiple motion patterns.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 9781612843865</identifier><identifier>ISBN: 1612843867</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 1612843859</identifier><identifier>EISBN: 1612843808</identifier><identifier>EISBN: 9781612843858</identifier><identifier>EISBN: 9781612843803</identifier><identifier>DOI: 10.1109/ICRA.2011.5980248</identifier><language>eng</language><publisher>IEEE</publisher><subject>Hidden Markov models ; Humans ; Predictive models ; Robots ; Safety ; Silicon ; Trajectory</subject><ispartof>2011 IEEE International Conference on Robotics and Automation, 2011, p.5875-5880</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-d6464d2ea3b2f694fde6349dda1b4cdf6f90e06044c2a2b49190b039c2f9ee7a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5980248$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5980248$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hao Ding</creatorcontrib><creatorcontrib>Reissig, G.</creatorcontrib><creatorcontrib>Wijaya, K.</creatorcontrib><creatorcontrib>Bortot, D.</creatorcontrib><creatorcontrib>Bengler, K.</creatorcontrib><creatorcontrib>Stursberg, O.</creatorcontrib><title>Human arm motion modeling and long-term prediction for safe and efficient Human-Robot-Interaction</title><title>2011 IEEE International Conference on Robotics and Automation</title><addtitle>ICRA</addtitle><description>Modeling and predicting human behavior is indispensable when industrial robots interacting with human operators are to be manipulated safely and efficiently. One challenge is that human operators tend to follow different motion patterns, depending on their intention and the structure of the environment. This precludes the use of classical estimation techniques based on kinematic or dynamic models, especially for the purpose of long-term prediction. In this paper, we propose a method based on Hidden Markov Models to predict the region of the workspace that is possibly occupied by the human within a prediction horizon. In contrast to predictions in the form of single points such as most likely human positions as obtained from previous approaches, the regions obtained here may serve as safety constraints when the robot motion is planned or optimized. This way one avoids collisions with a probability not less than a predefined threshold. The practicability of our method is demonstrated by successfully and accurately predicting the motion of a human arm in two scenarios involving multiple motion patterns.</description><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Predictive models</subject><subject>Robots</subject><subject>Safety</subject><subject>Silicon</subject><subject>Trajectory</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>9781612843865</isbn><isbn>1612843867</isbn><isbn>1612843859</isbn><isbn>1612843808</isbn><isbn>9781612843858</isbn><isbn>9781612843803</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1OwzAQhM2fRCl9AMQlL-Bgbxzbe6wqoJUqIVUgcauceF0ZNU6VhANvTxTKXOYw38xhGHuQIpdS4NNmtVvmIKTMS7QClL1gd1JLsKqwJV6yGZTGcGHN5xVboLH_mS6v2UyKUnBlAG_Zou-_xCit0QDMmFt_Ny5lrmuyph1im0bzdIzpkLnks2ObDnygMT115GM9EaHtst4FmggKIdaR0pBNS3zXVu3AN2ksuQm_ZzfBHXtanH3OPl6e31drvn173ayWW16DxYF7rbTyQK6oIGhUwZMuFHrvZKVqH3RAQUILpWpwUCmUKCpRYA0BiYwr5uzxbzcS0f7UxcZ1P_vzW8Uv05Na9g</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Hao Ding</creator><creator>Reissig, G.</creator><creator>Wijaya, K.</creator><creator>Bortot, D.</creator><creator>Bengler, K.</creator><creator>Stursberg, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201105</creationdate><title>Human arm motion modeling and long-term prediction for safe and efficient Human-Robot-Interaction</title><author>Hao Ding ; Reissig, G. ; Wijaya, K. ; Bortot, D. ; Bengler, K. ; Stursberg, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-d6464d2ea3b2f694fde6349dda1b4cdf6f90e06044c2a2b49190b039c2f9ee7a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Predictive models</topic><topic>Robots</topic><topic>Safety</topic><topic>Silicon</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Hao Ding</creatorcontrib><creatorcontrib>Reissig, G.</creatorcontrib><creatorcontrib>Wijaya, K.</creatorcontrib><creatorcontrib>Bortot, D.</creatorcontrib><creatorcontrib>Bengler, K.</creatorcontrib><creatorcontrib>Stursberg, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hao Ding</au><au>Reissig, G.</au><au>Wijaya, K.</au><au>Bortot, D.</au><au>Bengler, K.</au><au>Stursberg, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Human arm motion modeling and long-term prediction for safe and efficient Human-Robot-Interaction</atitle><btitle>2011 IEEE International Conference on Robotics and Automation</btitle><stitle>ICRA</stitle><date>2011-05</date><risdate>2011</risdate><spage>5875</spage><epage>5880</epage><pages>5875-5880</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>9781612843865</isbn><isbn>1612843867</isbn><eisbn>1612843859</eisbn><eisbn>1612843808</eisbn><eisbn>9781612843858</eisbn><eisbn>9781612843803</eisbn><abstract>Modeling and predicting human behavior is indispensable when industrial robots interacting with human operators are to be manipulated safely and efficiently. One challenge is that human operators tend to follow different motion patterns, depending on their intention and the structure of the environment. This precludes the use of classical estimation techniques based on kinematic or dynamic models, especially for the purpose of long-term prediction. In this paper, we propose a method based on Hidden Markov Models to predict the region of the workspace that is possibly occupied by the human within a prediction horizon. In contrast to predictions in the form of single points such as most likely human positions as obtained from previous approaches, the regions obtained here may serve as safety constraints when the robot motion is planned or optimized. This way one avoids collisions with a probability not less than a predefined threshold. The practicability of our method is demonstrated by successfully and accurately predicting the motion of a human arm in two scenarios involving multiple motion patterns.</abstract><pub>IEEE</pub><doi>10.1109/ICRA.2011.5980248</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof 2011 IEEE International Conference on Robotics and Automation, 2011, p.5875-5880
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_5980248
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Hidden Markov models
Humans
Predictive models
Robots
Safety
Silicon
Trajectory
title Human arm motion modeling and long-term prediction for safe and efficient Human-Robot-Interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Human%20arm%20motion%20modeling%20and%20long-term%20prediction%20for%20safe%20and%20efficient%20Human-Robot-Interaction&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Hao%20Ding&rft.date=2011-05&rft.spage=5875&rft.epage=5880&rft.pages=5875-5880&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=9781612843865&rft.isbn_list=1612843867&rft_id=info:doi/10.1109/ICRA.2011.5980248&rft_dat=%3Cieee_6IE%3E5980248%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612843859&rft.eisbn_list=1612843808&rft.eisbn_list=9781612843858&rft.eisbn_list=9781612843803&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5980248&rfr_iscdi=true