Extended Mie Theory for a Gyrotropic-Coated Conducting Sphere: An Analytical Approach
Based on the extended Mie theory with Fourier transform, the electromagnetic field in homogeneous gyrotropic media, for the first time, can be analytically obtained in spectral domain in terms of spherical eigen-vectors with their associated coefficients. The coefficients of electromagnetic fields i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2011-11, Vol.59 (11), p.4364-4368 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4368 |
---|---|
container_issue | 11 |
container_start_page | 4364 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 59 |
creator | GENG, You-Lin QIU, Cheng-Wei |
description | Based on the extended Mie theory with Fourier transform, the electromagnetic field in homogeneous gyrotropic media, for the first time, can be analytically obtained in spectral domain in terms of spherical eigen-vectors with their associated coefficients. The coefficients of electromagnetic fields in the gyrotropic shell and the isotropic host medium are thus exactly solved in a recursive manner. Our analytical extended Mie scattering theory have been numerically validated. Using this analytical approach, results of the scattering by the general gyrotropic coated conducting sphere are obtained. |
doi_str_mv | 10.1109/TAP.2011.2164195 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5979193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5979193</ieee_id><sourcerecordid>2553135651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-fb9dbbc225fbbb77031320e71f2eeea5ca582ba41128fa0e5d22b8f97131d8eb3</originalsourceid><addsrcrecordid>eNpdkEFr3DAQRkVoINu090AvJlB68lYzsmwpt2VJk0BKCt1Ab0aSR10Hx3IlL3T_fZXskkNBIMS8b2b0GLsAvgTg-utm9WOJHGCJUFeg5QlbgJSqRER4xxacgyo11r_O2PuUnvKzUlW1YI_Xf2caO-qK7z0Vmy2FuC98iIUpbvYxzDFMvSvXwcwZWYex27m5H38XP6ctRboqVmM-ZtjPvTNDsZqmGIzbfmCn3gyJPh7vc_b47Xqzvi3vH27u1qv70gldzaW3urPWIUpvrW0aLkAgpwY8EpGRzkiF1lQAqLzhJDtEq7xuQECnyIpz9uXQN4_9s6M0t899cjQMZqSwS62uhVIICjJ5-R_5FHYxb54hELWu1SvED5CLIaVIvp1i_2zivgXevlhus-X2xXJ7tJwjn499TcoGfDSj69NbDiU2FQqRuU8Hrs8_eytL3WjQQvwDQZ6E9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913696881</pqid></control><display><type>article</type><title>Extended Mie Theory for a Gyrotropic-Coated Conducting Sphere: An Analytical Approach</title><source>IEEE Electronic Library (IEL)</source><creator>GENG, You-Lin ; QIU, Cheng-Wei</creator><creatorcontrib>GENG, You-Lin ; QIU, Cheng-Wei</creatorcontrib><description>Based on the extended Mie theory with Fourier transform, the electromagnetic field in homogeneous gyrotropic media, for the first time, can be analytically obtained in spectral domain in terms of spherical eigen-vectors with their associated coefficients. The coefficients of electromagnetic fields in the gyrotropic shell and the isotropic host medium are thus exactly solved in a recursive manner. Our analytical extended Mie scattering theory have been numerically validated. Using this analytical approach, results of the scattering by the general gyrotropic coated conducting sphere are obtained.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2011.2164195</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Antennas ; Applied classical electromagnetism ; Applied sciences ; Coated structures ; Conduction ; Diffraction, scattering, reflection ; Electromagnetic fields ; Electromagnetic scattering ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetics ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Fourier transforms ; Fundamental areas of phenomenology (including applications) ; gyrotropic materials ; Manganese ; Mathematical analysis ; Mathematical models ; Media ; Physics ; Radar cross section ; Radiocommunications ; Radiowave propagation ; Shells ; Spectra ; Telecommunications ; Telecommunications and information theory</subject><ispartof>IEEE transactions on antennas and propagation, 2011-11, Vol.59 (11), p.4364-4368</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-fb9dbbc225fbbb77031320e71f2eeea5ca582ba41128fa0e5d22b8f97131d8eb3</citedby><cites>FETCH-LOGICAL-c394t-fb9dbbc225fbbb77031320e71f2eeea5ca582ba41128fa0e5d22b8f97131d8eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5979193$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5979193$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25274233$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GENG, You-Lin</creatorcontrib><creatorcontrib>QIU, Cheng-Wei</creatorcontrib><title>Extended Mie Theory for a Gyrotropic-Coated Conducting Sphere: An Analytical Approach</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Based on the extended Mie theory with Fourier transform, the electromagnetic field in homogeneous gyrotropic media, for the first time, can be analytically obtained in spectral domain in terms of spherical eigen-vectors with their associated coefficients. The coefficients of electromagnetic fields in the gyrotropic shell and the isotropic host medium are thus exactly solved in a recursive manner. Our analytical extended Mie scattering theory have been numerically validated. Using this analytical approach, results of the scattering by the general gyrotropic coated conducting sphere are obtained.</description><subject>Antennas</subject><subject>Applied classical electromagnetism</subject><subject>Applied sciences</subject><subject>Coated structures</subject><subject>Conduction</subject><subject>Diffraction, scattering, reflection</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic scattering</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetics</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>gyrotropic materials</subject><subject>Manganese</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Media</subject><subject>Physics</subject><subject>Radar cross section</subject><subject>Radiocommunications</subject><subject>Radiowave propagation</subject><subject>Shells</subject><subject>Spectra</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFr3DAQRkVoINu090AvJlB68lYzsmwpt2VJk0BKCt1Ab0aSR10Hx3IlL3T_fZXskkNBIMS8b2b0GLsAvgTg-utm9WOJHGCJUFeg5QlbgJSqRER4xxacgyo11r_O2PuUnvKzUlW1YI_Xf2caO-qK7z0Vmy2FuC98iIUpbvYxzDFMvSvXwcwZWYex27m5H38XP6ctRboqVmM-ZtjPvTNDsZqmGIzbfmCn3gyJPh7vc_b47Xqzvi3vH27u1qv70gldzaW3urPWIUpvrW0aLkAgpwY8EpGRzkiF1lQAqLzhJDtEq7xuQECnyIpz9uXQN4_9s6M0t899cjQMZqSwS62uhVIICjJ5-R_5FHYxb54hELWu1SvED5CLIaVIvp1i_2zivgXevlhus-X2xXJ7tJwjn499TcoGfDSj69NbDiU2FQqRuU8Hrs8_eytL3WjQQvwDQZ6E9A</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>GENG, You-Lin</creator><creator>QIU, Cheng-Wei</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20111101</creationdate><title>Extended Mie Theory for a Gyrotropic-Coated Conducting Sphere: An Analytical Approach</title><author>GENG, You-Lin ; QIU, Cheng-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-fb9dbbc225fbbb77031320e71f2eeea5ca582ba41128fa0e5d22b8f97131d8eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Antennas</topic><topic>Applied classical electromagnetism</topic><topic>Applied sciences</topic><topic>Coated structures</topic><topic>Conduction</topic><topic>Diffraction, scattering, reflection</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic scattering</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetics</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>gyrotropic materials</topic><topic>Manganese</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Media</topic><topic>Physics</topic><topic>Radar cross section</topic><topic>Radiocommunications</topic><topic>Radiowave propagation</topic><topic>Shells</topic><topic>Spectra</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GENG, You-Lin</creatorcontrib><creatorcontrib>QIU, Cheng-Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GENG, You-Lin</au><au>QIU, Cheng-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Mie Theory for a Gyrotropic-Coated Conducting Sphere: An Analytical Approach</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>59</volume><issue>11</issue><spage>4364</spage><epage>4368</epage><pages>4364-4368</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Based on the extended Mie theory with Fourier transform, the electromagnetic field in homogeneous gyrotropic media, for the first time, can be analytically obtained in spectral domain in terms of spherical eigen-vectors with their associated coefficients. The coefficients of electromagnetic fields in the gyrotropic shell and the isotropic host medium are thus exactly solved in a recursive manner. Our analytical extended Mie scattering theory have been numerically validated. Using this analytical approach, results of the scattering by the general gyrotropic coated conducting sphere are obtained.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2011.2164195</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2011-11, Vol.59 (11), p.4364-4368 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_ieee_primary_5979193 |
source | IEEE Electronic Library (IEL) |
subjects | Antennas Applied classical electromagnetism Applied sciences Coated structures Conduction Diffraction, scattering, reflection Electromagnetic fields Electromagnetic scattering Electromagnetic wave propagation, radiowave propagation Electromagnetics Electromagnetism electron and ion optics Exact sciences and technology Fourier transforms Fundamental areas of phenomenology (including applications) gyrotropic materials Manganese Mathematical analysis Mathematical models Media Physics Radar cross section Radiocommunications Radiowave propagation Shells Spectra Telecommunications Telecommunications and information theory |
title | Extended Mie Theory for a Gyrotropic-Coated Conducting Sphere: An Analytical Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T11%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Mie%20Theory%20for%20a%20Gyrotropic-Coated%20Conducting%20Sphere:%20An%20Analytical%20Approach&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=GENG,%20You-Lin&rft.date=2011-11-01&rft.volume=59&rft.issue=11&rft.spage=4364&rft.epage=4368&rft.pages=4364-4368&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2011.2164195&rft_dat=%3Cproquest_RIE%3E2553135651%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=913696881&rft_id=info:pmid/&rft_ieee_id=5979193&rfr_iscdi=true |