Extended Mie Theory for a Gyrotropic-Coated Conducting Sphere: An Analytical Approach

Based on the extended Mie theory with Fourier transform, the electromagnetic field in homogeneous gyrotropic media, for the first time, can be analytically obtained in spectral domain in terms of spherical eigen-vectors with their associated coefficients. The coefficients of electromagnetic fields i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2011-11, Vol.59 (11), p.4364-4368
Hauptverfasser: GENG, You-Lin, QIU, Cheng-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4368
container_issue 11
container_start_page 4364
container_title IEEE transactions on antennas and propagation
container_volume 59
creator GENG, You-Lin
QIU, Cheng-Wei
description Based on the extended Mie theory with Fourier transform, the electromagnetic field in homogeneous gyrotropic media, for the first time, can be analytically obtained in spectral domain in terms of spherical eigen-vectors with their associated coefficients. The coefficients of electromagnetic fields in the gyrotropic shell and the isotropic host medium are thus exactly solved in a recursive manner. Our analytical extended Mie scattering theory have been numerically validated. Using this analytical approach, results of the scattering by the general gyrotropic coated conducting sphere are obtained.
doi_str_mv 10.1109/TAP.2011.2164195
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5979193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5979193</ieee_id><sourcerecordid>2553135651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-fb9dbbc225fbbb77031320e71f2eeea5ca582ba41128fa0e5d22b8f97131d8eb3</originalsourceid><addsrcrecordid>eNpdkEFr3DAQRkVoINu090AvJlB68lYzsmwpt2VJk0BKCt1Ab0aSR10Hx3IlL3T_fZXskkNBIMS8b2b0GLsAvgTg-utm9WOJHGCJUFeg5QlbgJSqRER4xxacgyo11r_O2PuUnvKzUlW1YI_Xf2caO-qK7z0Vmy2FuC98iIUpbvYxzDFMvSvXwcwZWYex27m5H38XP6ctRboqVmM-ZtjPvTNDsZqmGIzbfmCn3gyJPh7vc_b47Xqzvi3vH27u1qv70gldzaW3urPWIUpvrW0aLkAgpwY8EpGRzkiF1lQAqLzhJDtEq7xuQECnyIpz9uXQN4_9s6M0t899cjQMZqSwS62uhVIICjJ5-R_5FHYxb54hELWu1SvED5CLIaVIvp1i_2zivgXevlhus-X2xXJ7tJwjn499TcoGfDSj69NbDiU2FQqRuU8Hrs8_eytL3WjQQvwDQZ6E9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913696881</pqid></control><display><type>article</type><title>Extended Mie Theory for a Gyrotropic-Coated Conducting Sphere: An Analytical Approach</title><source>IEEE Electronic Library (IEL)</source><creator>GENG, You-Lin ; QIU, Cheng-Wei</creator><creatorcontrib>GENG, You-Lin ; QIU, Cheng-Wei</creatorcontrib><description>Based on the extended Mie theory with Fourier transform, the electromagnetic field in homogeneous gyrotropic media, for the first time, can be analytically obtained in spectral domain in terms of spherical eigen-vectors with their associated coefficients. The coefficients of electromagnetic fields in the gyrotropic shell and the isotropic host medium are thus exactly solved in a recursive manner. Our analytical extended Mie scattering theory have been numerically validated. Using this analytical approach, results of the scattering by the general gyrotropic coated conducting sphere are obtained.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2011.2164195</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Antennas ; Applied classical electromagnetism ; Applied sciences ; Coated structures ; Conduction ; Diffraction, scattering, reflection ; Electromagnetic fields ; Electromagnetic scattering ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetics ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Fourier transforms ; Fundamental areas of phenomenology (including applications) ; gyrotropic materials ; Manganese ; Mathematical analysis ; Mathematical models ; Media ; Physics ; Radar cross section ; Radiocommunications ; Radiowave propagation ; Shells ; Spectra ; Telecommunications ; Telecommunications and information theory</subject><ispartof>IEEE transactions on antennas and propagation, 2011-11, Vol.59 (11), p.4364-4368</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-fb9dbbc225fbbb77031320e71f2eeea5ca582ba41128fa0e5d22b8f97131d8eb3</citedby><cites>FETCH-LOGICAL-c394t-fb9dbbc225fbbb77031320e71f2eeea5ca582ba41128fa0e5d22b8f97131d8eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5979193$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5979193$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25274233$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GENG, You-Lin</creatorcontrib><creatorcontrib>QIU, Cheng-Wei</creatorcontrib><title>Extended Mie Theory for a Gyrotropic-Coated Conducting Sphere: An Analytical Approach</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Based on the extended Mie theory with Fourier transform, the electromagnetic field in homogeneous gyrotropic media, for the first time, can be analytically obtained in spectral domain in terms of spherical eigen-vectors with their associated coefficients. The coefficients of electromagnetic fields in the gyrotropic shell and the isotropic host medium are thus exactly solved in a recursive manner. Our analytical extended Mie scattering theory have been numerically validated. Using this analytical approach, results of the scattering by the general gyrotropic coated conducting sphere are obtained.</description><subject>Antennas</subject><subject>Applied classical electromagnetism</subject><subject>Applied sciences</subject><subject>Coated structures</subject><subject>Conduction</subject><subject>Diffraction, scattering, reflection</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic scattering</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetics</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>gyrotropic materials</subject><subject>Manganese</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Media</subject><subject>Physics</subject><subject>Radar cross section</subject><subject>Radiocommunications</subject><subject>Radiowave propagation</subject><subject>Shells</subject><subject>Spectra</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFr3DAQRkVoINu090AvJlB68lYzsmwpt2VJk0BKCt1Ab0aSR10Hx3IlL3T_fZXskkNBIMS8b2b0GLsAvgTg-utm9WOJHGCJUFeg5QlbgJSqRER4xxacgyo11r_O2PuUnvKzUlW1YI_Xf2caO-qK7z0Vmy2FuC98iIUpbvYxzDFMvSvXwcwZWYex27m5H38XP6ctRboqVmM-ZtjPvTNDsZqmGIzbfmCn3gyJPh7vc_b47Xqzvi3vH27u1qv70gldzaW3urPWIUpvrW0aLkAgpwY8EpGRzkiF1lQAqLzhJDtEq7xuQECnyIpz9uXQN4_9s6M0t899cjQMZqSwS62uhVIICjJ5-R_5FHYxb54hELWu1SvED5CLIaVIvp1i_2zivgXevlhus-X2xXJ7tJwjn499TcoGfDSj69NbDiU2FQqRuU8Hrs8_eytL3WjQQvwDQZ6E9A</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>GENG, You-Lin</creator><creator>QIU, Cheng-Wei</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20111101</creationdate><title>Extended Mie Theory for a Gyrotropic-Coated Conducting Sphere: An Analytical Approach</title><author>GENG, You-Lin ; QIU, Cheng-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-fb9dbbc225fbbb77031320e71f2eeea5ca582ba41128fa0e5d22b8f97131d8eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Antennas</topic><topic>Applied classical electromagnetism</topic><topic>Applied sciences</topic><topic>Coated structures</topic><topic>Conduction</topic><topic>Diffraction, scattering, reflection</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic scattering</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetics</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>gyrotropic materials</topic><topic>Manganese</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Media</topic><topic>Physics</topic><topic>Radar cross section</topic><topic>Radiocommunications</topic><topic>Radiowave propagation</topic><topic>Shells</topic><topic>Spectra</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GENG, You-Lin</creatorcontrib><creatorcontrib>QIU, Cheng-Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GENG, You-Lin</au><au>QIU, Cheng-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Mie Theory for a Gyrotropic-Coated Conducting Sphere: An Analytical Approach</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>59</volume><issue>11</issue><spage>4364</spage><epage>4368</epage><pages>4364-4368</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Based on the extended Mie theory with Fourier transform, the electromagnetic field in homogeneous gyrotropic media, for the first time, can be analytically obtained in spectral domain in terms of spherical eigen-vectors with their associated coefficients. The coefficients of electromagnetic fields in the gyrotropic shell and the isotropic host medium are thus exactly solved in a recursive manner. Our analytical extended Mie scattering theory have been numerically validated. Using this analytical approach, results of the scattering by the general gyrotropic coated conducting sphere are obtained.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2011.2164195</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2011-11, Vol.59 (11), p.4364-4368
issn 0018-926X
1558-2221
language eng
recordid cdi_ieee_primary_5979193
source IEEE Electronic Library (IEL)
subjects Antennas
Applied classical electromagnetism
Applied sciences
Coated structures
Conduction
Diffraction, scattering, reflection
Electromagnetic fields
Electromagnetic scattering
Electromagnetic wave propagation, radiowave propagation
Electromagnetics
Electromagnetism
electron and ion optics
Exact sciences and technology
Fourier transforms
Fundamental areas of phenomenology (including applications)
gyrotropic materials
Manganese
Mathematical analysis
Mathematical models
Media
Physics
Radar cross section
Radiocommunications
Radiowave propagation
Shells
Spectra
Telecommunications
Telecommunications and information theory
title Extended Mie Theory for a Gyrotropic-Coated Conducting Sphere: An Analytical Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T11%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Mie%20Theory%20for%20a%20Gyrotropic-Coated%20Conducting%20Sphere:%20An%20Analytical%20Approach&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=GENG,%20You-Lin&rft.date=2011-11-01&rft.volume=59&rft.issue=11&rft.spage=4364&rft.epage=4368&rft.pages=4364-4368&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2011.2164195&rft_dat=%3Cproquest_RIE%3E2553135651%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=913696881&rft_id=info:pmid/&rft_ieee_id=5979193&rfr_iscdi=true