Nonlinear acoustic system identification using a combination of Volterra and power filters

The paper proposes a nonlinear system identification method that uses a combination of adaptive linear, Volterra and power filters. Adaptation of the kernels is made using a Normalized Least Mean Square algorithm. The method is applied in echo cancellation, where several sources of nonlinearities ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Contan, C., Topa, M., Kirei, B., Homana, I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Contan, C.
Topa, M.
Kirei, B.
Homana, I.
description The paper proposes a nonlinear system identification method that uses a combination of adaptive linear, Volterra and power filters. Adaptation of the kernels is made using a Normalized Least Mean Square algorithm. The method is applied in echo cancellation, where several sources of nonlinearities exist: the overdriven amplifier, the small loudspeaker at high volume, the room with different absorbent walls. Functions with nonlinear characteristics are chosen to model these distortions. The evaluation is made in terms of Echo Return Loss Enhancement. Results show that the overall convex combination approach performs better or at least as well as the best single adaptive filter.
doi_str_mv 10.1109/ISSCS.2011.5978752
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5978752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5978752</ieee_id><sourcerecordid>5978752</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-97f3077bf33626450511caab1f33f60316d1fd3bafbbc269aea1a2fc97827eb23</originalsourceid><addsrcrecordid>eNpVkM9KxDAYxCMiKGtfQC95gdZ8Sdu0Ryn-WVj0UPXgZfmSJhJpkyXpIvv2VnYvnmbmdxiYIeQGWAHA2rt133d9wRlAUbWykRU_I9lioAbelG0p2Pm_XMpLkqX0zRiDtlxwc0U-X4IfnTcYKeqwT7PTNB3SbCbqBuNnZ53G2QVP98n5L4pUh0k5f2TB0o8wziZGpOgHugs_JlLr_lC6JhcWx2Syk67I--PDW_ecb16f1t39JncgqzlvpRVMSmWFqHldVqwC0IgKFmBrJqAewA5CoVVK87pFg4Dc6mUYl0ZxsSK3x15njNnuopswHranR8QvB0dWPw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonlinear acoustic system identification using a combination of Volterra and power filters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Contan, C. ; Topa, M. ; Kirei, B. ; Homana, I.</creator><creatorcontrib>Contan, C. ; Topa, M. ; Kirei, B. ; Homana, I.</creatorcontrib><description>The paper proposes a nonlinear system identification method that uses a combination of adaptive linear, Volterra and power filters. Adaptation of the kernels is made using a Normalized Least Mean Square algorithm. The method is applied in echo cancellation, where several sources of nonlinearities exist: the overdriven amplifier, the small loudspeaker at high volume, the room with different absorbent walls. Functions with nonlinear characteristics are chosen to model these distortions. The evaluation is made in terms of Echo Return Loss Enhancement. Results show that the overall convex combination approach performs better or at least as well as the best single adaptive filter.</description><identifier>ISBN: 9781612849447</identifier><identifier>ISBN: 161284944X</identifier><identifier>EISBN: 9781612849430</identifier><identifier>EISBN: 1612849423</identifier><identifier>EISBN: 9781612849423</identifier><identifier>EISBN: 1612849431</identifier><identifier>DOI: 10.1109/ISSCS.2011.5978752</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Adaptation models ; Adaptive filters ; Maximum likelihood detection ; Nonlinear filters ; Nonlinear systems ; Power filters</subject><ispartof>ISSCS 2011 - International Symposium on Signals, Circuits and Systems, 2011, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5978752$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5978752$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Contan, C.</creatorcontrib><creatorcontrib>Topa, M.</creatorcontrib><creatorcontrib>Kirei, B.</creatorcontrib><creatorcontrib>Homana, I.</creatorcontrib><title>Nonlinear acoustic system identification using a combination of Volterra and power filters</title><title>ISSCS 2011 - International Symposium on Signals, Circuits and Systems</title><addtitle>ISSCS</addtitle><description>The paper proposes a nonlinear system identification method that uses a combination of adaptive linear, Volterra and power filters. Adaptation of the kernels is made using a Normalized Least Mean Square algorithm. The method is applied in echo cancellation, where several sources of nonlinearities exist: the overdriven amplifier, the small loudspeaker at high volume, the room with different absorbent walls. Functions with nonlinear characteristics are chosen to model these distortions. The evaluation is made in terms of Echo Return Loss Enhancement. Results show that the overall convex combination approach performs better or at least as well as the best single adaptive filter.</description><subject>Acoustics</subject><subject>Adaptation models</subject><subject>Adaptive filters</subject><subject>Maximum likelihood detection</subject><subject>Nonlinear filters</subject><subject>Nonlinear systems</subject><subject>Power filters</subject><isbn>9781612849447</isbn><isbn>161284944X</isbn><isbn>9781612849430</isbn><isbn>1612849423</isbn><isbn>9781612849423</isbn><isbn>1612849431</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM9KxDAYxCMiKGtfQC95gdZ8Sdu0Ryn-WVj0UPXgZfmSJhJpkyXpIvv2VnYvnmbmdxiYIeQGWAHA2rt133d9wRlAUbWykRU_I9lioAbelG0p2Pm_XMpLkqX0zRiDtlxwc0U-X4IfnTcYKeqwT7PTNB3SbCbqBuNnZ53G2QVP98n5L4pUh0k5f2TB0o8wziZGpOgHugs_JlLr_lC6JhcWx2Syk67I--PDW_ecb16f1t39JncgqzlvpRVMSmWFqHldVqwC0IgKFmBrJqAewA5CoVVK87pFg4Dc6mUYl0ZxsSK3x15njNnuopswHranR8QvB0dWPw</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Contan, C.</creator><creator>Topa, M.</creator><creator>Kirei, B.</creator><creator>Homana, I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Nonlinear acoustic system identification using a combination of Volterra and power filters</title><author>Contan, C. ; Topa, M. ; Kirei, B. ; Homana, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-97f3077bf33626450511caab1f33f60316d1fd3bafbbc269aea1a2fc97827eb23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustics</topic><topic>Adaptation models</topic><topic>Adaptive filters</topic><topic>Maximum likelihood detection</topic><topic>Nonlinear filters</topic><topic>Nonlinear systems</topic><topic>Power filters</topic><toplevel>online_resources</toplevel><creatorcontrib>Contan, C.</creatorcontrib><creatorcontrib>Topa, M.</creatorcontrib><creatorcontrib>Kirei, B.</creatorcontrib><creatorcontrib>Homana, I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Contan, C.</au><au>Topa, M.</au><au>Kirei, B.</au><au>Homana, I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonlinear acoustic system identification using a combination of Volterra and power filters</atitle><btitle>ISSCS 2011 - International Symposium on Signals, Circuits and Systems</btitle><stitle>ISSCS</stitle><date>2011-06</date><risdate>2011</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>9781612849447</isbn><isbn>161284944X</isbn><eisbn>9781612849430</eisbn><eisbn>1612849423</eisbn><eisbn>9781612849423</eisbn><eisbn>1612849431</eisbn><abstract>The paper proposes a nonlinear system identification method that uses a combination of adaptive linear, Volterra and power filters. Adaptation of the kernels is made using a Normalized Least Mean Square algorithm. The method is applied in echo cancellation, where several sources of nonlinearities exist: the overdriven amplifier, the small loudspeaker at high volume, the room with different absorbent walls. Functions with nonlinear characteristics are chosen to model these distortions. The evaluation is made in terms of Echo Return Loss Enhancement. Results show that the overall convex combination approach performs better or at least as well as the best single adaptive filter.</abstract><pub>IEEE</pub><doi>10.1109/ISSCS.2011.5978752</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781612849447
ispartof ISSCS 2011 - International Symposium on Signals, Circuits and Systems, 2011, p.1-4
issn
language eng
recordid cdi_ieee_primary_5978752
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustics
Adaptation models
Adaptive filters
Maximum likelihood detection
Nonlinear filters
Nonlinear systems
Power filters
title Nonlinear acoustic system identification using a combination of Volterra and power filters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonlinear%20acoustic%20system%20identification%20using%20a%20combination%20of%20Volterra%20and%20power%20filters&rft.btitle=ISSCS%202011%20-%20International%20Symposium%20on%20Signals,%20Circuits%20and%20Systems&rft.au=Contan,%20C.&rft.date=2011-06&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=9781612849447&rft.isbn_list=161284944X&rft_id=info:doi/10.1109/ISSCS.2011.5978752&rft_dat=%3Cieee_6IE%3E5978752%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612849430&rft.eisbn_list=1612849423&rft.eisbn_list=9781612849423&rft.eisbn_list=1612849431&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5978752&rfr_iscdi=true