Hot filament CVD conductive microcrystalline diamond for high Q, high acoustic velocity micromechanical resonators

A capacitively transduced micromechanical resonator constructed in hot filament CVD boron-doped microcrystalline diamond (MCD) structural material has posted a measured Q of 146,580 at 232.441 kHz, which is 3× higher than the previous high for conductive polydiamond. Moreover, radial-contour mode di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Akgul, Mehmet, Schneider, Robert, Ren, Zeying, Chandler, Gerry, Yeh, Victor, Nguyen, Clark T.-C.
Format: Tagungsbericht
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Akgul, Mehmet
Schneider, Robert
Ren, Zeying
Chandler, Gerry
Yeh, Victor
Nguyen, Clark T.-C.
description A capacitively transduced micromechanical resonator constructed in hot filament CVD boron-doped microcrystalline diamond (MCD) structural material has posted a measured Q of 146,580 at 232.441 kHz, which is 3× higher than the previous high for conductive polydiamond. Moreover, radial-contour mode disk resonators fabricated in the same MCD film and using material mismatched stems, cf., Figure 1, exhibit a Q of 71,400 at 299.86 MHz, which is the highest series-resonant Q yet measured for any on-chip resonator at this frequency. The material used here further exhibits an acoustic velocity of 18,516 m/s, which is now the highest to date among available surface micromachinable materials. For many potential applications, the hot filament CVD method demonstrated in this work is quite enabling, since it provides a much less expensive method than microwave CVD based alternatives for depositing doped CVD diamond over large wafers (e.g., 8") for batch fabrication.
doi_str_mv 10.1109/FCS.2011.5977877
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5977877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5977877</ieee_id><sourcerecordid>5977877</sourcerecordid><originalsourceid>FETCH-LOGICAL-i156t-b724b1082dea1b4b4159ede003e73248e0361cbfd0a6d0827e76e08a66fc23fb3</originalsourceid><addsrcrecordid>eNo1kE1LAzEYhCNasNbeBS_5AW7Nm2STzVFWa4WCiB_Xks2-ayO7G8mmhf33FlpPwzDPzGEIuQG2AGDmflm-LzgDWORG60LrMzI3ugAFvJAHQJ2Tq38D_IJMueA6AwNyQqaFzlQuOdOXZD4MP4wxMMaoPJ-SuAqJNr61HfaJll-P1IW-3rnk90g772JwcRySbVvfI6297Q4xbUKkW_-9pW93R7Uu7IbkHd1jG5xP47Hbodva3jvb0ohD6G0Kcbgmk8a2A85POiOfy6ePcpWtX59fyod15iFXKas0lxWwgtdooZKVhNxgjYwJ1ILLAplQ4KqmZlbVB0yjVsgKq1TjuGgqMSO3x12PiJvf6Dsbx83pPvEHrERhIw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hot filament CVD conductive microcrystalline diamond for high Q, high acoustic velocity micromechanical resonators</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Akgul, Mehmet ; Schneider, Robert ; Ren, Zeying ; Chandler, Gerry ; Yeh, Victor ; Nguyen, Clark T.-C.</creator><creatorcontrib>Akgul, Mehmet ; Schneider, Robert ; Ren, Zeying ; Chandler, Gerry ; Yeh, Victor ; Nguyen, Clark T.-C.</creatorcontrib><description>A capacitively transduced micromechanical resonator constructed in hot filament CVD boron-doped microcrystalline diamond (MCD) structural material has posted a measured Q of 146,580 at 232.441 kHz, which is 3× higher than the previous high for conductive polydiamond. Moreover, radial-contour mode disk resonators fabricated in the same MCD film and using material mismatched stems, cf., Figure 1, exhibit a Q of 71,400 at 299.86 MHz, which is the highest series-resonant Q yet measured for any on-chip resonator at this frequency. The material used here further exhibits an acoustic velocity of 18,516 m/s, which is now the highest to date among available surface micromachinable materials. For many potential applications, the hot filament CVD method demonstrated in this work is quite enabling, since it provides a much less expensive method than microwave CVD based alternatives for depositing doped CVD diamond over large wafers (e.g., 8") for batch fabrication.</description><identifier>ISSN: 2327-1914</identifier><identifier>ISBN: 1612841112</identifier><identifier>ISBN: 9781612841113</identifier><identifier>EISBN: 9781612841106</identifier><identifier>EISBN: 1612841120</identifier><identifier>EISBN: 9781612841120</identifier><identifier>EISBN: 1612841104</identifier><identifier>DOI: 10.1109/FCS.2011.5977877</identifier><identifier>LCCN: 87-654207</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Acoustics ; Diamond-like carbon ; Frequency measurement ; Q measurement ; Resonant frequency ; Temperature measurement</subject><ispartof>2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings, 2011, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5977877$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5977877$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Akgul, Mehmet</creatorcontrib><creatorcontrib>Schneider, Robert</creatorcontrib><creatorcontrib>Ren, Zeying</creatorcontrib><creatorcontrib>Chandler, Gerry</creatorcontrib><creatorcontrib>Yeh, Victor</creatorcontrib><creatorcontrib>Nguyen, Clark T.-C.</creatorcontrib><title>Hot filament CVD conductive microcrystalline diamond for high Q, high acoustic velocity micromechanical resonators</title><title>2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings</title><addtitle>FCS</addtitle><description>A capacitively transduced micromechanical resonator constructed in hot filament CVD boron-doped microcrystalline diamond (MCD) structural material has posted a measured Q of 146,580 at 232.441 kHz, which is 3× higher than the previous high for conductive polydiamond. Moreover, radial-contour mode disk resonators fabricated in the same MCD film and using material mismatched stems, cf., Figure 1, exhibit a Q of 71,400 at 299.86 MHz, which is the highest series-resonant Q yet measured for any on-chip resonator at this frequency. The material used here further exhibits an acoustic velocity of 18,516 m/s, which is now the highest to date among available surface micromachinable materials. For many potential applications, the hot filament CVD method demonstrated in this work is quite enabling, since it provides a much less expensive method than microwave CVD based alternatives for depositing doped CVD diamond over large wafers (e.g., 8") for batch fabrication.</description><subject>Acoustics</subject><subject>Diamond-like carbon</subject><subject>Frequency measurement</subject><subject>Q measurement</subject><subject>Resonant frequency</subject><subject>Temperature measurement</subject><issn>2327-1914</issn><isbn>1612841112</isbn><isbn>9781612841113</isbn><isbn>9781612841106</isbn><isbn>1612841120</isbn><isbn>9781612841120</isbn><isbn>1612841104</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE1LAzEYhCNasNbeBS_5AW7Nm2STzVFWa4WCiB_Xks2-ayO7G8mmhf33FlpPwzDPzGEIuQG2AGDmflm-LzgDWORG60LrMzI3ugAFvJAHQJ2Tq38D_IJMueA6AwNyQqaFzlQuOdOXZD4MP4wxMMaoPJ-SuAqJNr61HfaJll-P1IW-3rnk90g772JwcRySbVvfI6297Q4xbUKkW_-9pW93R7Uu7IbkHd1jG5xP47Hbodva3jvb0ohD6G0Kcbgmk8a2A85POiOfy6ePcpWtX59fyod15iFXKas0lxWwgtdooZKVhNxgjYwJ1ILLAplQ4KqmZlbVB0yjVsgKq1TjuGgqMSO3x12PiJvf6Dsbx83pPvEHrERhIw</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Akgul, Mehmet</creator><creator>Schneider, Robert</creator><creator>Ren, Zeying</creator><creator>Chandler, Gerry</creator><creator>Yeh, Victor</creator><creator>Nguyen, Clark T.-C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201105</creationdate><title>Hot filament CVD conductive microcrystalline diamond for high Q, high acoustic velocity micromechanical resonators</title><author>Akgul, Mehmet ; Schneider, Robert ; Ren, Zeying ; Chandler, Gerry ; Yeh, Victor ; Nguyen, Clark T.-C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i156t-b724b1082dea1b4b4159ede003e73248e0361cbfd0a6d0827e76e08a66fc23fb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2011</creationdate><topic>Acoustics</topic><topic>Diamond-like carbon</topic><topic>Frequency measurement</topic><topic>Q measurement</topic><topic>Resonant frequency</topic><topic>Temperature measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Akgul, Mehmet</creatorcontrib><creatorcontrib>Schneider, Robert</creatorcontrib><creatorcontrib>Ren, Zeying</creatorcontrib><creatorcontrib>Chandler, Gerry</creatorcontrib><creatorcontrib>Yeh, Victor</creatorcontrib><creatorcontrib>Nguyen, Clark T.-C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Akgul, Mehmet</au><au>Schneider, Robert</au><au>Ren, Zeying</au><au>Chandler, Gerry</au><au>Yeh, Victor</au><au>Nguyen, Clark T.-C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hot filament CVD conductive microcrystalline diamond for high Q, high acoustic velocity micromechanical resonators</atitle><btitle>2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings</btitle><stitle>FCS</stitle><date>2011-05</date><risdate>2011</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2327-1914</issn><isbn>1612841112</isbn><isbn>9781612841113</isbn><eisbn>9781612841106</eisbn><eisbn>1612841120</eisbn><eisbn>9781612841120</eisbn><eisbn>1612841104</eisbn><abstract>A capacitively transduced micromechanical resonator constructed in hot filament CVD boron-doped microcrystalline diamond (MCD) structural material has posted a measured Q of 146,580 at 232.441 kHz, which is 3× higher than the previous high for conductive polydiamond. Moreover, radial-contour mode disk resonators fabricated in the same MCD film and using material mismatched stems, cf., Figure 1, exhibit a Q of 71,400 at 299.86 MHz, which is the highest series-resonant Q yet measured for any on-chip resonator at this frequency. The material used here further exhibits an acoustic velocity of 18,516 m/s, which is now the highest to date among available surface micromachinable materials. For many potential applications, the hot filament CVD method demonstrated in this work is quite enabling, since it provides a much less expensive method than microwave CVD based alternatives for depositing doped CVD diamond over large wafers (e.g., 8") for batch fabrication.</abstract><pub>IEEE</pub><doi>10.1109/FCS.2011.5977877</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-1914
ispartof 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings, 2011, p.1-6
issn 2327-1914
language eng ; jpn
recordid cdi_ieee_primary_5977877
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustics
Diamond-like carbon
Frequency measurement
Q measurement
Resonant frequency
Temperature measurement
title Hot filament CVD conductive microcrystalline diamond for high Q, high acoustic velocity micromechanical resonators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A00%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hot%20filament%20CVD%20conductive%20microcrystalline%20diamond%20for%20high%20Q,%20high%20acoustic%20velocity%20micromechanical%20resonators&rft.btitle=2011%20Joint%20Conference%20of%20the%20IEEE%20International%20Frequency%20Control%20and%20the%20European%20Frequency%20and%20Time%20Forum%20(FCS)%20Proceedings&rft.au=Akgul,%20Mehmet&rft.date=2011-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2327-1914&rft.isbn=1612841112&rft.isbn_list=9781612841113&rft_id=info:doi/10.1109/FCS.2011.5977877&rft_dat=%3Cieee_6IE%3E5977877%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612841106&rft.eisbn_list=1612841120&rft.eisbn_list=9781612841120&rft.eisbn_list=1612841104&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5977877&rfr_iscdi=true