Low-level multi-INT sensor fusion using entropic measures of dependence
An information-theoretic method of low-level multi-INT sensor fusion is presented, the end product of which is the entropic map, i.e. a collection of Gaussian clusters of information relevant to a given target signature formed over a geographical basis. The method is designed to be computationally e...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Deignan, P. B. Wong, M. A. Douglass, A. B. |
description | An information-theoretic method of low-level multi-INT sensor fusion is presented, the end product of which is the entropic map, i.e. a collection of Gaussian clusters of information relevant to a given target signature formed over a geographical basis. The method is designed to be computationally efficient with minimal side-information. To that end, an unbiased estimate of information from finite data is derived along with a data-dependent, information-optimal measurement partition. A method for the determination of the information-optimal sensor suite is given for a possibly geographically dependent target signature. Finally, it is shown that a multi-relational entropic measure of dependence can be superior to suboptimal error-based techniques of estimation of multiple sensor measurements of a real process. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5977627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5977627</ieee_id><sourcerecordid>5977627</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3001f9ab2163241123535a0269ef41963689c3fc92228c5de7056d8fa53ff22e3</originalsourceid><addsrcrecordid>eNotjs1KxDAURiMiqGOfwE1eoJDc_N6lDDoODOOm-yG2NxJp09K0im9vQb_FObvDd8XuBXrQWnnlr1mFzkttnBNgHd6yqpRPsc1aBO3u2OE0ftc9fVHPh7VfUn08N7xQLuPM41rSmPnG_MEpL_M4pZYPFMo6U-Fj5B1NlDvKLT2wmxj6QtW_d6x5eW72r_Xp7XDcP53qhGKplRAyYngHaRVoKUEZZcJ2DSlqiVZZj62KLQKAb01HThjb-RiMihGA1I49_mUTEV2mOQ1h_rkYdM6CU78SO0Z1</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Low-level multi-INT sensor fusion using entropic measures of dependence</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Deignan, P. B. ; Wong, M. A. ; Douglass, A. B.</creator><creatorcontrib>Deignan, P. B. ; Wong, M. A. ; Douglass, A. B.</creatorcontrib><description>An information-theoretic method of low-level multi-INT sensor fusion is presented, the end product of which is the entropic map, i.e. a collection of Gaussian clusters of information relevant to a given target signature formed over a geographical basis. The method is designed to be computationally efficient with minimal side-information. To that end, an unbiased estimate of information from finite data is derived along with a data-dependent, information-optimal measurement partition. A method for the determination of the information-optimal sensor suite is given for a possibly geographically dependent target signature. Finally, it is shown that a multi-relational entropic measure of dependence can be superior to suboptimal error-based techniques of estimation of multiple sensor measurements of a real process.</description><identifier>ISBN: 9781457702679</identifier><identifier>ISBN: 1457702673</identifier><identifier>EISBN: 0982443838</identifier><identifier>EISBN: 9780982443828</identifier><identifier>EISBN: 098244382X</identifier><identifier>EISBN: 9780982443835</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Entropic map ; Entropy ; Estimation ; Mutual information ; Optimization ; resource management ; Sensor fusion ; Traffic control</subject><ispartof>14th International Conference on Information Fusion, 2011, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5977627$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5977627$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Deignan, P. B.</creatorcontrib><creatorcontrib>Wong, M. A.</creatorcontrib><creatorcontrib>Douglass, A. B.</creatorcontrib><title>Low-level multi-INT sensor fusion using entropic measures of dependence</title><title>14th International Conference on Information Fusion</title><addtitle>ICIF</addtitle><description>An information-theoretic method of low-level multi-INT sensor fusion is presented, the end product of which is the entropic map, i.e. a collection of Gaussian clusters of information relevant to a given target signature formed over a geographical basis. The method is designed to be computationally efficient with minimal side-information. To that end, an unbiased estimate of information from finite data is derived along with a data-dependent, information-optimal measurement partition. A method for the determination of the information-optimal sensor suite is given for a possibly geographically dependent target signature. Finally, it is shown that a multi-relational entropic measure of dependence can be superior to suboptimal error-based techniques of estimation of multiple sensor measurements of a real process.</description><subject>Algorithm design and analysis</subject><subject>Entropic map</subject><subject>Entropy</subject><subject>Estimation</subject><subject>Mutual information</subject><subject>Optimization</subject><subject>resource management</subject><subject>Sensor fusion</subject><subject>Traffic control</subject><isbn>9781457702679</isbn><isbn>1457702673</isbn><isbn>0982443838</isbn><isbn>9780982443828</isbn><isbn>098244382X</isbn><isbn>9780982443835</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjs1KxDAURiMiqGOfwE1eoJDc_N6lDDoODOOm-yG2NxJp09K0im9vQb_FObvDd8XuBXrQWnnlr1mFzkttnBNgHd6yqpRPsc1aBO3u2OE0ftc9fVHPh7VfUn08N7xQLuPM41rSmPnG_MEpL_M4pZYPFMo6U-Fj5B1NlDvKLT2wmxj6QtW_d6x5eW72r_Xp7XDcP53qhGKplRAyYngHaRVoKUEZZcJ2DSlqiVZZj62KLQKAb01HThjb-RiMihGA1I49_mUTEV2mOQ1h_rkYdM6CU78SO0Z1</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Deignan, P. B.</creator><creator>Wong, M. A.</creator><creator>Douglass, A. B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>Low-level multi-INT sensor fusion using entropic measures of dependence</title><author>Deignan, P. B. ; Wong, M. A. ; Douglass, A. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3001f9ab2163241123535a0269ef41963689c3fc92228c5de7056d8fa53ff22e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Entropic map</topic><topic>Entropy</topic><topic>Estimation</topic><topic>Mutual information</topic><topic>Optimization</topic><topic>resource management</topic><topic>Sensor fusion</topic><topic>Traffic control</topic><toplevel>online_resources</toplevel><creatorcontrib>Deignan, P. B.</creatorcontrib><creatorcontrib>Wong, M. A.</creatorcontrib><creatorcontrib>Douglass, A. B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deignan, P. B.</au><au>Wong, M. A.</au><au>Douglass, A. B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Low-level multi-INT sensor fusion using entropic measures of dependence</atitle><btitle>14th International Conference on Information Fusion</btitle><stitle>ICIF</stitle><date>2011-07</date><risdate>2011</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><isbn>9781457702679</isbn><isbn>1457702673</isbn><eisbn>0982443838</eisbn><eisbn>9780982443828</eisbn><eisbn>098244382X</eisbn><eisbn>9780982443835</eisbn><abstract>An information-theoretic method of low-level multi-INT sensor fusion is presented, the end product of which is the entropic map, i.e. a collection of Gaussian clusters of information relevant to a given target signature formed over a geographical basis. The method is designed to be computationally efficient with minimal side-information. To that end, an unbiased estimate of information from finite data is derived along with a data-dependent, information-optimal measurement partition. A method for the determination of the information-optimal sensor suite is given for a possibly geographically dependent target signature. Finally, it is shown that a multi-relational entropic measure of dependence can be superior to suboptimal error-based techniques of estimation of multiple sensor measurements of a real process.</abstract><pub>IEEE</pub><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457702679 |
ispartof | 14th International Conference on Information Fusion, 2011, p.1-7 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5977627 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Entropic map Entropy Estimation Mutual information Optimization resource management Sensor fusion Traffic control |
title | Low-level multi-INT sensor fusion using entropic measures of dependence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Low-level%20multi-INT%20sensor%20fusion%20using%20entropic%20measures%20of%20dependence&rft.btitle=14th%20International%20Conference%20on%20Information%20Fusion&rft.au=Deignan,%20P.%20B.&rft.date=2011-07&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.isbn=9781457702679&rft.isbn_list=1457702673&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E5977627%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0982443838&rft.eisbn_list=9780982443828&rft.eisbn_list=098244382X&rft.eisbn_list=9780982443835&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5977627&rfr_iscdi=true |