Firearm recognition based on whole firing pin impression image via backpropagation neural network
Firearms identification is a vital aim of firearm analysis. The firing pin impression image on a cartridge case from a fired bullet is one of the most significant clues in firearms identification. In this study, a set of data which focused on selected 6 features of firing pin impression images befor...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 182 |
---|---|
container_issue | |
container_start_page | 177 |
container_title | |
container_volume | 1 |
creator | Kamaruddin, S. B. A. Ghani, N. A. M. Choong-Yeun Liong Jemain, A. A. |
description | Firearms identification is a vital aim of firearm analysis. The firing pin impression image on a cartridge case from a fired bullet is one of the most significant clues in firearms identification. In this study, a set of data which focused on selected 6 features of firing pin impression images before an entirety of five different pistols of South African made; the Parabellum Vector SPI 9mm model, were used. The numerical features are geometric moments of whole image computed from a total of 747 cartridge case images. Under pattern recognition theory, the supervised features of firing pin impression images were then trained and validated using a two-layer backpropagation neural network (BPNN) design with computed hidden layers. A two-layer 6-7-5 connections BPNN of sigmoid/linear transfer functions with `trainlm' algorithm was found to yield the best classification result using cross-validation, where 96% of the images were correctly classified according to the pistols used. Moreover, the network was trained under very small mean-square error (MSE=0.01). This means that neural network method is capable to learn and validate well the numerical features of whole firing pin impression with high precision and fast classification results. |
doi_str_mv | 10.1109/ICPAIR.2011.5976891 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5976891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5976891</ieee_id><sourcerecordid>5976891</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4e37abc357f3891f3e01db686ca9ff3d8d4fd4cc427ba0caef09e3100441079b3</originalsourceid><addsrcrecordid>eNpVUMtOwzAQNEJIoNIv6MU_kLCuXTs-VhGFSpVAqPdq46yDaV5yAhV_T6C9sJfZkWZHO8PYQkAqBNiHbf663r6lSxAiXVmjMyuu2NyaTGixzJQCDdf_uDG3bD4MHzCN1lYZdcdwEyJhbHgk11VtGEPX8gIHKvm0nN67mrgPMbQV70PLQ9NHGoZfUWiwIv4VcJK7Yx-7Hiv8O2_pM2I9wXjq4vGe3XisB5pfcMb2m8d9_pzsXp62-XqXBAtjokgaLJxcGS-nIF4SiLLQmXZovZdlVipfKufU0hQIDsmDJSkAlBJgbCFnbHG2DUR06OP0Xvw-XHqRP7zbWQ0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Firearm recognition based on whole firing pin impression image via backpropagation neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kamaruddin, S. B. A. ; Ghani, N. A. M. ; Choong-Yeun Liong ; Jemain, A. A.</creator><creatorcontrib>Kamaruddin, S. B. A. ; Ghani, N. A. M. ; Choong-Yeun Liong ; Jemain, A. A.</creatorcontrib><description>Firearms identification is a vital aim of firearm analysis. The firing pin impression image on a cartridge case from a fired bullet is one of the most significant clues in firearms identification. In this study, a set of data which focused on selected 6 features of firing pin impression images before an entirety of five different pistols of South African made; the Parabellum Vector SPI 9mm model, were used. The numerical features are geometric moments of whole image computed from a total of 747 cartridge case images. Under pattern recognition theory, the supervised features of firing pin impression images were then trained and validated using a two-layer backpropagation neural network (BPNN) design with computed hidden layers. A two-layer 6-7-5 connections BPNN of sigmoid/linear transfer functions with `trainlm' algorithm was found to yield the best classification result using cross-validation, where 96% of the images were correctly classified according to the pistols used. Moreover, the network was trained under very small mean-square error (MSE=0.01). This means that neural network method is capable to learn and validate well the numerical features of whole firing pin impression with high precision and fast classification results.</description><identifier>ISBN: 9781612844077</identifier><identifier>ISBN: 1612844073</identifier><identifier>EISBN: 9781612844060</identifier><identifier>EISBN: 1612844057</identifier><identifier>EISBN: 1612844065</identifier><identifier>EISBN: 9781612844053</identifier><identifier>DOI: 10.1109/ICPAIR.2011.5976891</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Backpropagation ; backpropagation neural network (BPNN) ; Biological neural networks ; Classification algorithms ; firearm analysis ; firearm identification ; Fires ; Firing ; forensic ballistics ; geometric moment ; Training</subject><ispartof>2011 International Conference on Pattern Analysis and Intelligence Robotics, 2011, Vol.1, p.177-182</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5976891$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5976891$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kamaruddin, S. B. A.</creatorcontrib><creatorcontrib>Ghani, N. A. M.</creatorcontrib><creatorcontrib>Choong-Yeun Liong</creatorcontrib><creatorcontrib>Jemain, A. A.</creatorcontrib><title>Firearm recognition based on whole firing pin impression image via backpropagation neural network</title><title>2011 International Conference on Pattern Analysis and Intelligence Robotics</title><addtitle>ICPAIR</addtitle><description>Firearms identification is a vital aim of firearm analysis. The firing pin impression image on a cartridge case from a fired bullet is one of the most significant clues in firearms identification. In this study, a set of data which focused on selected 6 features of firing pin impression images before an entirety of five different pistols of South African made; the Parabellum Vector SPI 9mm model, were used. The numerical features are geometric moments of whole image computed from a total of 747 cartridge case images. Under pattern recognition theory, the supervised features of firing pin impression images were then trained and validated using a two-layer backpropagation neural network (BPNN) design with computed hidden layers. A two-layer 6-7-5 connections BPNN of sigmoid/linear transfer functions with `trainlm' algorithm was found to yield the best classification result using cross-validation, where 96% of the images were correctly classified according to the pistols used. Moreover, the network was trained under very small mean-square error (MSE=0.01). This means that neural network method is capable to learn and validate well the numerical features of whole firing pin impression with high precision and fast classification results.</description><subject>Artificial neural networks</subject><subject>Backpropagation</subject><subject>backpropagation neural network (BPNN)</subject><subject>Biological neural networks</subject><subject>Classification algorithms</subject><subject>firearm analysis</subject><subject>firearm identification</subject><subject>Fires</subject><subject>Firing</subject><subject>forensic ballistics</subject><subject>geometric moment</subject><subject>Training</subject><isbn>9781612844077</isbn><isbn>1612844073</isbn><isbn>9781612844060</isbn><isbn>1612844057</isbn><isbn>1612844065</isbn><isbn>9781612844053</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMtOwzAQNEJIoNIv6MU_kLCuXTs-VhGFSpVAqPdq46yDaV5yAhV_T6C9sJfZkWZHO8PYQkAqBNiHbf663r6lSxAiXVmjMyuu2NyaTGixzJQCDdf_uDG3bD4MHzCN1lYZdcdwEyJhbHgk11VtGEPX8gIHKvm0nN67mrgPMbQV70PLQ9NHGoZfUWiwIv4VcJK7Yx-7Hiv8O2_pM2I9wXjq4vGe3XisB5pfcMb2m8d9_pzsXp62-XqXBAtjokgaLJxcGS-nIF4SiLLQmXZovZdlVipfKufU0hQIDsmDJSkAlBJgbCFnbHG2DUR06OP0Xvw-XHqRP7zbWQ0</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Kamaruddin, S. B. A.</creator><creator>Ghani, N. A. M.</creator><creator>Choong-Yeun Liong</creator><creator>Jemain, A. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Firearm recognition based on whole firing pin impression image via backpropagation neural network</title><author>Kamaruddin, S. B. A. ; Ghani, N. A. M. ; Choong-Yeun Liong ; Jemain, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4e37abc357f3891f3e01db686ca9ff3d8d4fd4cc427ba0caef09e3100441079b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial neural networks</topic><topic>Backpropagation</topic><topic>backpropagation neural network (BPNN)</topic><topic>Biological neural networks</topic><topic>Classification algorithms</topic><topic>firearm analysis</topic><topic>firearm identification</topic><topic>Fires</topic><topic>Firing</topic><topic>forensic ballistics</topic><topic>geometric moment</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Kamaruddin, S. B. A.</creatorcontrib><creatorcontrib>Ghani, N. A. M.</creatorcontrib><creatorcontrib>Choong-Yeun Liong</creatorcontrib><creatorcontrib>Jemain, A. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kamaruddin, S. B. A.</au><au>Ghani, N. A. M.</au><au>Choong-Yeun Liong</au><au>Jemain, A. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Firearm recognition based on whole firing pin impression image via backpropagation neural network</atitle><btitle>2011 International Conference on Pattern Analysis and Intelligence Robotics</btitle><stitle>ICPAIR</stitle><date>2011-06</date><risdate>2011</risdate><volume>1</volume><spage>177</spage><epage>182</epage><pages>177-182</pages><isbn>9781612844077</isbn><isbn>1612844073</isbn><eisbn>9781612844060</eisbn><eisbn>1612844057</eisbn><eisbn>1612844065</eisbn><eisbn>9781612844053</eisbn><abstract>Firearms identification is a vital aim of firearm analysis. The firing pin impression image on a cartridge case from a fired bullet is one of the most significant clues in firearms identification. In this study, a set of data which focused on selected 6 features of firing pin impression images before an entirety of five different pistols of South African made; the Parabellum Vector SPI 9mm model, were used. The numerical features are geometric moments of whole image computed from a total of 747 cartridge case images. Under pattern recognition theory, the supervised features of firing pin impression images were then trained and validated using a two-layer backpropagation neural network (BPNN) design with computed hidden layers. A two-layer 6-7-5 connections BPNN of sigmoid/linear transfer functions with `trainlm' algorithm was found to yield the best classification result using cross-validation, where 96% of the images were correctly classified according to the pistols used. Moreover, the network was trained under very small mean-square error (MSE=0.01). This means that neural network method is capable to learn and validate well the numerical features of whole firing pin impression with high precision and fast classification results.</abstract><pub>IEEE</pub><doi>10.1109/ICPAIR.2011.5976891</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781612844077 |
ispartof | 2011 International Conference on Pattern Analysis and Intelligence Robotics, 2011, Vol.1, p.177-182 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5976891 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Backpropagation backpropagation neural network (BPNN) Biological neural networks Classification algorithms firearm analysis firearm identification Fires Firing forensic ballistics geometric moment Training |
title | Firearm recognition based on whole firing pin impression image via backpropagation neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Firearm%20recognition%20based%20on%20whole%20firing%20pin%20impression%20image%20via%20backpropagation%20neural%20network&rft.btitle=2011%20International%20Conference%20on%20Pattern%20Analysis%20and%20Intelligence%20Robotics&rft.au=Kamaruddin,%20S.%20B.%20A.&rft.date=2011-06&rft.volume=1&rft.spage=177&rft.epage=182&rft.pages=177-182&rft.isbn=9781612844077&rft.isbn_list=1612844073&rft_id=info:doi/10.1109/ICPAIR.2011.5976891&rft_dat=%3Cieee_6IE%3E5976891%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612844060&rft.eisbn_list=1612844057&rft.eisbn_list=1612844065&rft.eisbn_list=9781612844053&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5976891&rfr_iscdi=true |