Firearm recognition based on whole firing pin impression image via backpropagation neural network

Firearms identification is a vital aim of firearm analysis. The firing pin impression image on a cartridge case from a fired bullet is one of the most significant clues in firearms identification. In this study, a set of data which focused on selected 6 features of firing pin impression images befor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kamaruddin, S. B. A., Ghani, N. A. M., Choong-Yeun Liong, Jemain, A. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182
container_issue
container_start_page 177
container_title
container_volume 1
creator Kamaruddin, S. B. A.
Ghani, N. A. M.
Choong-Yeun Liong
Jemain, A. A.
description Firearms identification is a vital aim of firearm analysis. The firing pin impression image on a cartridge case from a fired bullet is one of the most significant clues in firearms identification. In this study, a set of data which focused on selected 6 features of firing pin impression images before an entirety of five different pistols of South African made; the Parabellum Vector SPI 9mm model, were used. The numerical features are geometric moments of whole image computed from a total of 747 cartridge case images. Under pattern recognition theory, the supervised features of firing pin impression images were then trained and validated using a two-layer backpropagation neural network (BPNN) design with computed hidden layers. A two-layer 6-7-5 connections BPNN of sigmoid/linear transfer functions with `trainlm' algorithm was found to yield the best classification result using cross-validation, where 96% of the images were correctly classified according to the pistols used. Moreover, the network was trained under very small mean-square error (MSE=0.01). This means that neural network method is capable to learn and validate well the numerical features of whole firing pin impression with high precision and fast classification results.
doi_str_mv 10.1109/ICPAIR.2011.5976891
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5976891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5976891</ieee_id><sourcerecordid>5976891</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4e37abc357f3891f3e01db686ca9ff3d8d4fd4cc427ba0caef09e3100441079b3</originalsourceid><addsrcrecordid>eNpVUMtOwzAQNEJIoNIv6MU_kLCuXTs-VhGFSpVAqPdq46yDaV5yAhV_T6C9sJfZkWZHO8PYQkAqBNiHbf663r6lSxAiXVmjMyuu2NyaTGixzJQCDdf_uDG3bD4MHzCN1lYZdcdwEyJhbHgk11VtGEPX8gIHKvm0nN67mrgPMbQV70PLQ9NHGoZfUWiwIv4VcJK7Yx-7Hiv8O2_pM2I9wXjq4vGe3XisB5pfcMb2m8d9_pzsXp62-XqXBAtjokgaLJxcGS-nIF4SiLLQmXZovZdlVipfKufU0hQIDsmDJSkAlBJgbCFnbHG2DUR06OP0Xvw-XHqRP7zbWQ0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Firearm recognition based on whole firing pin impression image via backpropagation neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kamaruddin, S. B. A. ; Ghani, N. A. M. ; Choong-Yeun Liong ; Jemain, A. A.</creator><creatorcontrib>Kamaruddin, S. B. A. ; Ghani, N. A. M. ; Choong-Yeun Liong ; Jemain, A. A.</creatorcontrib><description>Firearms identification is a vital aim of firearm analysis. The firing pin impression image on a cartridge case from a fired bullet is one of the most significant clues in firearms identification. In this study, a set of data which focused on selected 6 features of firing pin impression images before an entirety of five different pistols of South African made; the Parabellum Vector SPI 9mm model, were used. The numerical features are geometric moments of whole image computed from a total of 747 cartridge case images. Under pattern recognition theory, the supervised features of firing pin impression images were then trained and validated using a two-layer backpropagation neural network (BPNN) design with computed hidden layers. A two-layer 6-7-5 connections BPNN of sigmoid/linear transfer functions with `trainlm' algorithm was found to yield the best classification result using cross-validation, where 96% of the images were correctly classified according to the pistols used. Moreover, the network was trained under very small mean-square error (MSE=0.01). This means that neural network method is capable to learn and validate well the numerical features of whole firing pin impression with high precision and fast classification results.</description><identifier>ISBN: 9781612844077</identifier><identifier>ISBN: 1612844073</identifier><identifier>EISBN: 9781612844060</identifier><identifier>EISBN: 1612844057</identifier><identifier>EISBN: 1612844065</identifier><identifier>EISBN: 9781612844053</identifier><identifier>DOI: 10.1109/ICPAIR.2011.5976891</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Backpropagation ; backpropagation neural network (BPNN) ; Biological neural networks ; Classification algorithms ; firearm analysis ; firearm identification ; Fires ; Firing ; forensic ballistics ; geometric moment ; Training</subject><ispartof>2011 International Conference on Pattern Analysis and Intelligence Robotics, 2011, Vol.1, p.177-182</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5976891$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5976891$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kamaruddin, S. B. A.</creatorcontrib><creatorcontrib>Ghani, N. A. M.</creatorcontrib><creatorcontrib>Choong-Yeun Liong</creatorcontrib><creatorcontrib>Jemain, A. A.</creatorcontrib><title>Firearm recognition based on whole firing pin impression image via backpropagation neural network</title><title>2011 International Conference on Pattern Analysis and Intelligence Robotics</title><addtitle>ICPAIR</addtitle><description>Firearms identification is a vital aim of firearm analysis. The firing pin impression image on a cartridge case from a fired bullet is one of the most significant clues in firearms identification. In this study, a set of data which focused on selected 6 features of firing pin impression images before an entirety of five different pistols of South African made; the Parabellum Vector SPI 9mm model, were used. The numerical features are geometric moments of whole image computed from a total of 747 cartridge case images. Under pattern recognition theory, the supervised features of firing pin impression images were then trained and validated using a two-layer backpropagation neural network (BPNN) design with computed hidden layers. A two-layer 6-7-5 connections BPNN of sigmoid/linear transfer functions with `trainlm' algorithm was found to yield the best classification result using cross-validation, where 96% of the images were correctly classified according to the pistols used. Moreover, the network was trained under very small mean-square error (MSE=0.01). This means that neural network method is capable to learn and validate well the numerical features of whole firing pin impression with high precision and fast classification results.</description><subject>Artificial neural networks</subject><subject>Backpropagation</subject><subject>backpropagation neural network (BPNN)</subject><subject>Biological neural networks</subject><subject>Classification algorithms</subject><subject>firearm analysis</subject><subject>firearm identification</subject><subject>Fires</subject><subject>Firing</subject><subject>forensic ballistics</subject><subject>geometric moment</subject><subject>Training</subject><isbn>9781612844077</isbn><isbn>1612844073</isbn><isbn>9781612844060</isbn><isbn>1612844057</isbn><isbn>1612844065</isbn><isbn>9781612844053</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMtOwzAQNEJIoNIv6MU_kLCuXTs-VhGFSpVAqPdq46yDaV5yAhV_T6C9sJfZkWZHO8PYQkAqBNiHbf663r6lSxAiXVmjMyuu2NyaTGixzJQCDdf_uDG3bD4MHzCN1lYZdcdwEyJhbHgk11VtGEPX8gIHKvm0nN67mrgPMbQV70PLQ9NHGoZfUWiwIv4VcJK7Yx-7Hiv8O2_pM2I9wXjq4vGe3XisB5pfcMb2m8d9_pzsXp62-XqXBAtjokgaLJxcGS-nIF4SiLLQmXZovZdlVipfKufU0hQIDsmDJSkAlBJgbCFnbHG2DUR06OP0Xvw-XHqRP7zbWQ0</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Kamaruddin, S. B. A.</creator><creator>Ghani, N. A. M.</creator><creator>Choong-Yeun Liong</creator><creator>Jemain, A. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Firearm recognition based on whole firing pin impression image via backpropagation neural network</title><author>Kamaruddin, S. B. A. ; Ghani, N. A. M. ; Choong-Yeun Liong ; Jemain, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4e37abc357f3891f3e01db686ca9ff3d8d4fd4cc427ba0caef09e3100441079b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial neural networks</topic><topic>Backpropagation</topic><topic>backpropagation neural network (BPNN)</topic><topic>Biological neural networks</topic><topic>Classification algorithms</topic><topic>firearm analysis</topic><topic>firearm identification</topic><topic>Fires</topic><topic>Firing</topic><topic>forensic ballistics</topic><topic>geometric moment</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Kamaruddin, S. B. A.</creatorcontrib><creatorcontrib>Ghani, N. A. M.</creatorcontrib><creatorcontrib>Choong-Yeun Liong</creatorcontrib><creatorcontrib>Jemain, A. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kamaruddin, S. B. A.</au><au>Ghani, N. A. M.</au><au>Choong-Yeun Liong</au><au>Jemain, A. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Firearm recognition based on whole firing pin impression image via backpropagation neural network</atitle><btitle>2011 International Conference on Pattern Analysis and Intelligence Robotics</btitle><stitle>ICPAIR</stitle><date>2011-06</date><risdate>2011</risdate><volume>1</volume><spage>177</spage><epage>182</epage><pages>177-182</pages><isbn>9781612844077</isbn><isbn>1612844073</isbn><eisbn>9781612844060</eisbn><eisbn>1612844057</eisbn><eisbn>1612844065</eisbn><eisbn>9781612844053</eisbn><abstract>Firearms identification is a vital aim of firearm analysis. The firing pin impression image on a cartridge case from a fired bullet is one of the most significant clues in firearms identification. In this study, a set of data which focused on selected 6 features of firing pin impression images before an entirety of five different pistols of South African made; the Parabellum Vector SPI 9mm model, were used. The numerical features are geometric moments of whole image computed from a total of 747 cartridge case images. Under pattern recognition theory, the supervised features of firing pin impression images were then trained and validated using a two-layer backpropagation neural network (BPNN) design with computed hidden layers. A two-layer 6-7-5 connections BPNN of sigmoid/linear transfer functions with `trainlm' algorithm was found to yield the best classification result using cross-validation, where 96% of the images were correctly classified according to the pistols used. Moreover, the network was trained under very small mean-square error (MSE=0.01). This means that neural network method is capable to learn and validate well the numerical features of whole firing pin impression with high precision and fast classification results.</abstract><pub>IEEE</pub><doi>10.1109/ICPAIR.2011.5976891</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781612844077
ispartof 2011 International Conference on Pattern Analysis and Intelligence Robotics, 2011, Vol.1, p.177-182
issn
language eng
recordid cdi_ieee_primary_5976891
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Backpropagation
backpropagation neural network (BPNN)
Biological neural networks
Classification algorithms
firearm analysis
firearm identification
Fires
Firing
forensic ballistics
geometric moment
Training
title Firearm recognition based on whole firing pin impression image via backpropagation neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Firearm%20recognition%20based%20on%20whole%20firing%20pin%20impression%20image%20via%20backpropagation%20neural%20network&rft.btitle=2011%20International%20Conference%20on%20Pattern%20Analysis%20and%20Intelligence%20Robotics&rft.au=Kamaruddin,%20S.%20B.%20A.&rft.date=2011-06&rft.volume=1&rft.spage=177&rft.epage=182&rft.pages=177-182&rft.isbn=9781612844077&rft.isbn_list=1612844073&rft_id=info:doi/10.1109/ICPAIR.2011.5976891&rft_dat=%3Cieee_6IE%3E5976891%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612844060&rft.eisbn_list=1612844057&rft.eisbn_list=1612844065&rft.eisbn_list=9781612844053&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5976891&rfr_iscdi=true