Transport Physics and Device Modeling of Zinc Oxide Thin-Film Transistors-Part II: Contact Resistance in Short Channel Devices
Short-channel zinc oxide (ZnO) thin-film transistors (TFTs) are investigated in a wide range of temperatures and bias conditions. Scaling down the channel length, the TFT performance is seriously affected by contact resistances, which depend on gate voltage and temperature. To account for the contac...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2011-09, Vol.58 (9), p.3025-3033 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3033 |
---|---|
container_issue | 9 |
container_start_page | 3025 |
container_title | IEEE transactions on electron devices |
container_volume | 58 |
creator | Torricelli, F. Smits, E. C. P. Meijboom, J. R. Tripathi, A. K. Gelinck, G. H. Colalongo, L. Kovacs-Vajna, Z. M. de Leeuw, Dago M. Cantatore, E. |
description | Short-channel zinc oxide (ZnO) thin-film transistors (TFTs) are investigated in a wide range of temperatures and bias conditions. Scaling down the channel length, the TFT performance is seriously affected by contact resistances, which depend on gate voltage and temperature. To account for the contact resistances, the transistor is ideally split in three parts. The contact regions are modeled as two separate transistors with a fixed channel length and an exponential distribution of localized states, whereas the channel is treated as reported in Part I. The overall model reproduces the measured characteristics at different channel length, with a single set of physical and geometrical parameters. It can be readily implemented in a circuit simulator. Numerical simulations confirm the validity of the model approach and are used to evaluate the impact of nonidealities at the electrode/semiconductor interface. |
doi_str_mv | 10.1109/TED.2011.2159929 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5975214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5975214</ieee_id><sourcerecordid>1671336435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-b7414180c2f7eff07c7b055f63663ae77a277885aad57053d08e4f3fa3b0e70f3</originalsourceid><addsrcrecordid>eNp9kc1vEzEQxVcIJELhjsTFQkJw2eDvD24obSFSUSsIFy6W4x0TVxs72BtEL_ztOCTqgQOn0Wh-783Yr-ueEzwnBJu3q4vzOcWEzCkRxlDzoJsRIVRvJJcPuxnGRPeGafa4e1LrbWsl53TW_V4Vl-oulwndbO5q9BW5NKBz-Bk9oE95gDGm7ygH9C0mj65_xQHQahNTfxnHLfqrjnXKpfY3rpksl-_QIqfJ-Ql9hsPIpWYUE_qyOSxZbFxKMJ4W1Kfdo-DGCs9O9az7enmxWnzsr64_LBfvr3rPtJj6teKEE409DQpCwMqrNRYiSCYlc6CUo0ppLZwbhMKCDVgDDyw4tsagcGBn3euj767kH3uok93G6mEcXYK8r9YQYxjmGDfyzX9JIhVhTHImGvryH_Q270tq77Bac9ku4rRB-Aj5kmstEOyuxK0rd5Zge0jOtuTsITl7Sq5JXp18XfVuDO2Pfaz3OsoFYS2-xr04chEA7sfCKEEJZ38AEEagSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884677842</pqid></control><display><type>article</type><title>Transport Physics and Device Modeling of Zinc Oxide Thin-Film Transistors-Part II: Contact Resistance in Short Channel Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Torricelli, F. ; Smits, E. C. P. ; Meijboom, J. R. ; Tripathi, A. K. ; Gelinck, G. H. ; Colalongo, L. ; Kovacs-Vajna, Z. M. ; de Leeuw, Dago M. ; Cantatore, E.</creator><creatorcontrib>Torricelli, F. ; Smits, E. C. P. ; Meijboom, J. R. ; Tripathi, A. K. ; Gelinck, G. H. ; Colalongo, L. ; Kovacs-Vajna, Z. M. ; de Leeuw, Dago M. ; Cantatore, E.</creatorcontrib><description>Short-channel zinc oxide (ZnO) thin-film transistors (TFTs) are investigated in a wide range of temperatures and bias conditions. Scaling down the channel length, the TFT performance is seriously affected by contact resistances, which depend on gate voltage and temperature. To account for the contact resistances, the transistor is ideally split in three parts. The contact regions are modeled as two separate transistors with a fixed channel length and an exponential distribution of localized states, whereas the channel is treated as reported in Part I. The overall model reproduces the measured characteristics at different channel length, with a single set of physical and geometrical parameters. It can be readily implemented in a circuit simulator. Numerical simulations confirm the validity of the model approach and are used to evaluate the impact of nonidealities at the electrode/semiconductor interface.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2011.2159929</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Activation energy ; analytical model ; Applied sciences ; bottom contact thin-film transistors (TFT) ; Channels ; Contact ; Contact resistance ; device simulation ; Devices ; Electric, optical and optoelectronic circuits ; Electrical resistance measurement ; Electronics ; Exact sciences and technology ; field-effect mobility ; Logic gates ; Mathematical models ; Semiconductor device measurement ; Semiconductor devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Studies ; Temperature measurement ; Theoretical study. Circuits analysis and design ; Thin films ; Transistors ; Zinc oxide ; zinc oxide (ZnO) ; Zinc oxides</subject><ispartof>IEEE transactions on electron devices, 2011-09, Vol.58 (9), p.3025-3033</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-b7414180c2f7eff07c7b055f63663ae77a277885aad57053d08e4f3fa3b0e70f3</citedby><cites>FETCH-LOGICAL-c385t-b7414180c2f7eff07c7b055f63663ae77a277885aad57053d08e4f3fa3b0e70f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5975214$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5975214$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24513164$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Torricelli, F.</creatorcontrib><creatorcontrib>Smits, E. C. P.</creatorcontrib><creatorcontrib>Meijboom, J. R.</creatorcontrib><creatorcontrib>Tripathi, A. K.</creatorcontrib><creatorcontrib>Gelinck, G. H.</creatorcontrib><creatorcontrib>Colalongo, L.</creatorcontrib><creatorcontrib>Kovacs-Vajna, Z. M.</creatorcontrib><creatorcontrib>de Leeuw, Dago M.</creatorcontrib><creatorcontrib>Cantatore, E.</creatorcontrib><title>Transport Physics and Device Modeling of Zinc Oxide Thin-Film Transistors-Part II: Contact Resistance in Short Channel Devices</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Short-channel zinc oxide (ZnO) thin-film transistors (TFTs) are investigated in a wide range of temperatures and bias conditions. Scaling down the channel length, the TFT performance is seriously affected by contact resistances, which depend on gate voltage and temperature. To account for the contact resistances, the transistor is ideally split in three parts. The contact regions are modeled as two separate transistors with a fixed channel length and an exponential distribution of localized states, whereas the channel is treated as reported in Part I. The overall model reproduces the measured characteristics at different channel length, with a single set of physical and geometrical parameters. It can be readily implemented in a circuit simulator. Numerical simulations confirm the validity of the model approach and are used to evaluate the impact of nonidealities at the electrode/semiconductor interface.</description><subject>Activation energy</subject><subject>analytical model</subject><subject>Applied sciences</subject><subject>bottom contact thin-film transistors (TFT)</subject><subject>Channels</subject><subject>Contact</subject><subject>Contact resistance</subject><subject>device simulation</subject><subject>Devices</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electrical resistance measurement</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>field-effect mobility</subject><subject>Logic gates</subject><subject>Mathematical models</subject><subject>Semiconductor device measurement</subject><subject>Semiconductor devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Studies</subject><subject>Temperature measurement</subject><subject>Theoretical study. Circuits analysis and design</subject><subject>Thin films</subject><subject>Transistors</subject><subject>Zinc oxide</subject><subject>zinc oxide (ZnO)</subject><subject>Zinc oxides</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1vEzEQxVcIJELhjsTFQkJw2eDvD24obSFSUSsIFy6W4x0TVxs72BtEL_ztOCTqgQOn0Wh-783Yr-ueEzwnBJu3q4vzOcWEzCkRxlDzoJsRIVRvJJcPuxnGRPeGafa4e1LrbWsl53TW_V4Vl-oulwndbO5q9BW5NKBz-Bk9oE95gDGm7ygH9C0mj65_xQHQahNTfxnHLfqrjnXKpfY3rpksl-_QIqfJ-Ql9hsPIpWYUE_qyOSxZbFxKMJ4W1Kfdo-DGCs9O9az7enmxWnzsr64_LBfvr3rPtJj6teKEE409DQpCwMqrNRYiSCYlc6CUo0ppLZwbhMKCDVgDDyw4tsagcGBn3euj767kH3uok93G6mEcXYK8r9YQYxjmGDfyzX9JIhVhTHImGvryH_Q270tq77Bac9ku4rRB-Aj5kmstEOyuxK0rd5Zge0jOtuTsITl7Sq5JXp18XfVuDO2Pfaz3OsoFYS2-xr04chEA7sfCKEEJZ38AEEagSw</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Torricelli, F.</creator><creator>Smits, E. C. P.</creator><creator>Meijboom, J. R.</creator><creator>Tripathi, A. K.</creator><creator>Gelinck, G. H.</creator><creator>Colalongo, L.</creator><creator>Kovacs-Vajna, Z. M.</creator><creator>de Leeuw, Dago M.</creator><creator>Cantatore, E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110901</creationdate><title>Transport Physics and Device Modeling of Zinc Oxide Thin-Film Transistors-Part II: Contact Resistance in Short Channel Devices</title><author>Torricelli, F. ; Smits, E. C. P. ; Meijboom, J. R. ; Tripathi, A. K. ; Gelinck, G. H. ; Colalongo, L. ; Kovacs-Vajna, Z. M. ; de Leeuw, Dago M. ; Cantatore, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-b7414180c2f7eff07c7b055f63663ae77a277885aad57053d08e4f3fa3b0e70f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activation energy</topic><topic>analytical model</topic><topic>Applied sciences</topic><topic>bottom contact thin-film transistors (TFT)</topic><topic>Channels</topic><topic>Contact</topic><topic>Contact resistance</topic><topic>device simulation</topic><topic>Devices</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electrical resistance measurement</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>field-effect mobility</topic><topic>Logic gates</topic><topic>Mathematical models</topic><topic>Semiconductor device measurement</topic><topic>Semiconductor devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Studies</topic><topic>Temperature measurement</topic><topic>Theoretical study. Circuits analysis and design</topic><topic>Thin films</topic><topic>Transistors</topic><topic>Zinc oxide</topic><topic>zinc oxide (ZnO)</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torricelli, F.</creatorcontrib><creatorcontrib>Smits, E. C. P.</creatorcontrib><creatorcontrib>Meijboom, J. R.</creatorcontrib><creatorcontrib>Tripathi, A. K.</creatorcontrib><creatorcontrib>Gelinck, G. H.</creatorcontrib><creatorcontrib>Colalongo, L.</creatorcontrib><creatorcontrib>Kovacs-Vajna, Z. M.</creatorcontrib><creatorcontrib>de Leeuw, Dago M.</creatorcontrib><creatorcontrib>Cantatore, E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Torricelli, F.</au><au>Smits, E. C. P.</au><au>Meijboom, J. R.</au><au>Tripathi, A. K.</au><au>Gelinck, G. H.</au><au>Colalongo, L.</au><au>Kovacs-Vajna, Z. M.</au><au>de Leeuw, Dago M.</au><au>Cantatore, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport Physics and Device Modeling of Zinc Oxide Thin-Film Transistors-Part II: Contact Resistance in Short Channel Devices</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>58</volume><issue>9</issue><spage>3025</spage><epage>3033</epage><pages>3025-3033</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Short-channel zinc oxide (ZnO) thin-film transistors (TFTs) are investigated in a wide range of temperatures and bias conditions. Scaling down the channel length, the TFT performance is seriously affected by contact resistances, which depend on gate voltage and temperature. To account for the contact resistances, the transistor is ideally split in three parts. The contact regions are modeled as two separate transistors with a fixed channel length and an exponential distribution of localized states, whereas the channel is treated as reported in Part I. The overall model reproduces the measured characteristics at different channel length, with a single set of physical and geometrical parameters. It can be readily implemented in a circuit simulator. Numerical simulations confirm the validity of the model approach and are used to evaluate the impact of nonidealities at the electrode/semiconductor interface.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2011.2159929</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2011-09, Vol.58 (9), p.3025-3033 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_5975214 |
source | IEEE Electronic Library (IEL) |
subjects | Activation energy analytical model Applied sciences bottom contact thin-film transistors (TFT) Channels Contact Contact resistance device simulation Devices Electric, optical and optoelectronic circuits Electrical resistance measurement Electronics Exact sciences and technology field-effect mobility Logic gates Mathematical models Semiconductor device measurement Semiconductor devices Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors Studies Temperature measurement Theoretical study. Circuits analysis and design Thin films Transistors Zinc oxide zinc oxide (ZnO) Zinc oxides |
title | Transport Physics and Device Modeling of Zinc Oxide Thin-Film Transistors-Part II: Contact Resistance in Short Channel Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20Physics%20and%20Device%20Modeling%20of%20Zinc%20Oxide%20Thin-Film%20Transistors-Part%20II:%20Contact%20Resistance%20in%20Short%20Channel%20Devices&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Torricelli,%20F.&rft.date=2011-09-01&rft.volume=58&rft.issue=9&rft.spage=3025&rft.epage=3033&rft.pages=3025-3033&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2011.2159929&rft_dat=%3Cproquest_RIE%3E1671336435%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884677842&rft_id=info:pmid/&rft_ieee_id=5975214&rfr_iscdi=true |