Transport Physics and Device Modeling of Zinc Oxide Thin-Film Transistors-Part II: Contact Resistance in Short Channel Devices

Short-channel zinc oxide (ZnO) thin-film transistors (TFTs) are investigated in a wide range of temperatures and bias conditions. Scaling down the channel length, the TFT performance is seriously affected by contact resistances, which depend on gate voltage and temperature. To account for the contac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2011-09, Vol.58 (9), p.3025-3033
Hauptverfasser: Torricelli, F., Smits, E. C. P., Meijboom, J. R., Tripathi, A. K., Gelinck, G. H., Colalongo, L., Kovacs-Vajna, Z. M., de Leeuw, Dago M., Cantatore, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3033
container_issue 9
container_start_page 3025
container_title IEEE transactions on electron devices
container_volume 58
creator Torricelli, F.
Smits, E. C. P.
Meijboom, J. R.
Tripathi, A. K.
Gelinck, G. H.
Colalongo, L.
Kovacs-Vajna, Z. M.
de Leeuw, Dago M.
Cantatore, E.
description Short-channel zinc oxide (ZnO) thin-film transistors (TFTs) are investigated in a wide range of temperatures and bias conditions. Scaling down the channel length, the TFT performance is seriously affected by contact resistances, which depend on gate voltage and temperature. To account for the contact resistances, the transistor is ideally split in three parts. The contact regions are modeled as two separate transistors with a fixed channel length and an exponential distribution of localized states, whereas the channel is treated as reported in Part I. The overall model reproduces the measured characteristics at different channel length, with a single set of physical and geometrical parameters. It can be readily implemented in a circuit simulator. Numerical simulations confirm the validity of the model approach and are used to evaluate the impact of nonidealities at the electrode/semiconductor interface.
doi_str_mv 10.1109/TED.2011.2159929
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5975214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5975214</ieee_id><sourcerecordid>1671336435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-b7414180c2f7eff07c7b055f63663ae77a277885aad57053d08e4f3fa3b0e70f3</originalsourceid><addsrcrecordid>eNp9kc1vEzEQxVcIJELhjsTFQkJw2eDvD24obSFSUSsIFy6W4x0TVxs72BtEL_ztOCTqgQOn0Wh-783Yr-ueEzwnBJu3q4vzOcWEzCkRxlDzoJsRIVRvJJcPuxnGRPeGafa4e1LrbWsl53TW_V4Vl-oulwndbO5q9BW5NKBz-Bk9oE95gDGm7ygH9C0mj65_xQHQahNTfxnHLfqrjnXKpfY3rpksl-_QIqfJ-Ql9hsPIpWYUE_qyOSxZbFxKMJ4W1Kfdo-DGCs9O9az7enmxWnzsr64_LBfvr3rPtJj6teKEE409DQpCwMqrNRYiSCYlc6CUo0ppLZwbhMKCDVgDDyw4tsagcGBn3euj767kH3uok93G6mEcXYK8r9YQYxjmGDfyzX9JIhVhTHImGvryH_Q270tq77Bac9ku4rRB-Aj5kmstEOyuxK0rd5Zge0jOtuTsITl7Sq5JXp18XfVuDO2Pfaz3OsoFYS2-xr04chEA7sfCKEEJZ38AEEagSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884677842</pqid></control><display><type>article</type><title>Transport Physics and Device Modeling of Zinc Oxide Thin-Film Transistors-Part II: Contact Resistance in Short Channel Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Torricelli, F. ; Smits, E. C. P. ; Meijboom, J. R. ; Tripathi, A. K. ; Gelinck, G. H. ; Colalongo, L. ; Kovacs-Vajna, Z. M. ; de Leeuw, Dago M. ; Cantatore, E.</creator><creatorcontrib>Torricelli, F. ; Smits, E. C. P. ; Meijboom, J. R. ; Tripathi, A. K. ; Gelinck, G. H. ; Colalongo, L. ; Kovacs-Vajna, Z. M. ; de Leeuw, Dago M. ; Cantatore, E.</creatorcontrib><description>Short-channel zinc oxide (ZnO) thin-film transistors (TFTs) are investigated in a wide range of temperatures and bias conditions. Scaling down the channel length, the TFT performance is seriously affected by contact resistances, which depend on gate voltage and temperature. To account for the contact resistances, the transistor is ideally split in three parts. The contact regions are modeled as two separate transistors with a fixed channel length and an exponential distribution of localized states, whereas the channel is treated as reported in Part I. The overall model reproduces the measured characteristics at different channel length, with a single set of physical and geometrical parameters. It can be readily implemented in a circuit simulator. Numerical simulations confirm the validity of the model approach and are used to evaluate the impact of nonidealities at the electrode/semiconductor interface.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2011.2159929</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Activation energy ; analytical model ; Applied sciences ; bottom contact thin-film transistors (TFT) ; Channels ; Contact ; Contact resistance ; device simulation ; Devices ; Electric, optical and optoelectronic circuits ; Electrical resistance measurement ; Electronics ; Exact sciences and technology ; field-effect mobility ; Logic gates ; Mathematical models ; Semiconductor device measurement ; Semiconductor devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Studies ; Temperature measurement ; Theoretical study. Circuits analysis and design ; Thin films ; Transistors ; Zinc oxide ; zinc oxide (ZnO) ; Zinc oxides</subject><ispartof>IEEE transactions on electron devices, 2011-09, Vol.58 (9), p.3025-3033</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-b7414180c2f7eff07c7b055f63663ae77a277885aad57053d08e4f3fa3b0e70f3</citedby><cites>FETCH-LOGICAL-c385t-b7414180c2f7eff07c7b055f63663ae77a277885aad57053d08e4f3fa3b0e70f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5975214$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5975214$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24513164$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Torricelli, F.</creatorcontrib><creatorcontrib>Smits, E. C. P.</creatorcontrib><creatorcontrib>Meijboom, J. R.</creatorcontrib><creatorcontrib>Tripathi, A. K.</creatorcontrib><creatorcontrib>Gelinck, G. H.</creatorcontrib><creatorcontrib>Colalongo, L.</creatorcontrib><creatorcontrib>Kovacs-Vajna, Z. M.</creatorcontrib><creatorcontrib>de Leeuw, Dago M.</creatorcontrib><creatorcontrib>Cantatore, E.</creatorcontrib><title>Transport Physics and Device Modeling of Zinc Oxide Thin-Film Transistors-Part II: Contact Resistance in Short Channel Devices</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Short-channel zinc oxide (ZnO) thin-film transistors (TFTs) are investigated in a wide range of temperatures and bias conditions. Scaling down the channel length, the TFT performance is seriously affected by contact resistances, which depend on gate voltage and temperature. To account for the contact resistances, the transistor is ideally split in three parts. The contact regions are modeled as two separate transistors with a fixed channel length and an exponential distribution of localized states, whereas the channel is treated as reported in Part I. The overall model reproduces the measured characteristics at different channel length, with a single set of physical and geometrical parameters. It can be readily implemented in a circuit simulator. Numerical simulations confirm the validity of the model approach and are used to evaluate the impact of nonidealities at the electrode/semiconductor interface.</description><subject>Activation energy</subject><subject>analytical model</subject><subject>Applied sciences</subject><subject>bottom contact thin-film transistors (TFT)</subject><subject>Channels</subject><subject>Contact</subject><subject>Contact resistance</subject><subject>device simulation</subject><subject>Devices</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electrical resistance measurement</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>field-effect mobility</subject><subject>Logic gates</subject><subject>Mathematical models</subject><subject>Semiconductor device measurement</subject><subject>Semiconductor devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Studies</subject><subject>Temperature measurement</subject><subject>Theoretical study. Circuits analysis and design</subject><subject>Thin films</subject><subject>Transistors</subject><subject>Zinc oxide</subject><subject>zinc oxide (ZnO)</subject><subject>Zinc oxides</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1vEzEQxVcIJELhjsTFQkJw2eDvD24obSFSUSsIFy6W4x0TVxs72BtEL_ztOCTqgQOn0Wh-783Yr-ueEzwnBJu3q4vzOcWEzCkRxlDzoJsRIVRvJJcPuxnGRPeGafa4e1LrbWsl53TW_V4Vl-oulwndbO5q9BW5NKBz-Bk9oE95gDGm7ygH9C0mj65_xQHQahNTfxnHLfqrjnXKpfY3rpksl-_QIqfJ-Ql9hsPIpWYUE_qyOSxZbFxKMJ4W1Kfdo-DGCs9O9az7enmxWnzsr64_LBfvr3rPtJj6teKEE409DQpCwMqrNRYiSCYlc6CUo0ppLZwbhMKCDVgDDyw4tsagcGBn3euj767kH3uok93G6mEcXYK8r9YQYxjmGDfyzX9JIhVhTHImGvryH_Q270tq77Bac9ku4rRB-Aj5kmstEOyuxK0rd5Zge0jOtuTsITl7Sq5JXp18XfVuDO2Pfaz3OsoFYS2-xr04chEA7sfCKEEJZ38AEEagSw</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Torricelli, F.</creator><creator>Smits, E. C. P.</creator><creator>Meijboom, J. R.</creator><creator>Tripathi, A. K.</creator><creator>Gelinck, G. H.</creator><creator>Colalongo, L.</creator><creator>Kovacs-Vajna, Z. M.</creator><creator>de Leeuw, Dago M.</creator><creator>Cantatore, E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110901</creationdate><title>Transport Physics and Device Modeling of Zinc Oxide Thin-Film Transistors-Part II: Contact Resistance in Short Channel Devices</title><author>Torricelli, F. ; Smits, E. C. P. ; Meijboom, J. R. ; Tripathi, A. K. ; Gelinck, G. H. ; Colalongo, L. ; Kovacs-Vajna, Z. M. ; de Leeuw, Dago M. ; Cantatore, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-b7414180c2f7eff07c7b055f63663ae77a277885aad57053d08e4f3fa3b0e70f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activation energy</topic><topic>analytical model</topic><topic>Applied sciences</topic><topic>bottom contact thin-film transistors (TFT)</topic><topic>Channels</topic><topic>Contact</topic><topic>Contact resistance</topic><topic>device simulation</topic><topic>Devices</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electrical resistance measurement</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>field-effect mobility</topic><topic>Logic gates</topic><topic>Mathematical models</topic><topic>Semiconductor device measurement</topic><topic>Semiconductor devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Studies</topic><topic>Temperature measurement</topic><topic>Theoretical study. Circuits analysis and design</topic><topic>Thin films</topic><topic>Transistors</topic><topic>Zinc oxide</topic><topic>zinc oxide (ZnO)</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torricelli, F.</creatorcontrib><creatorcontrib>Smits, E. C. P.</creatorcontrib><creatorcontrib>Meijboom, J. R.</creatorcontrib><creatorcontrib>Tripathi, A. K.</creatorcontrib><creatorcontrib>Gelinck, G. H.</creatorcontrib><creatorcontrib>Colalongo, L.</creatorcontrib><creatorcontrib>Kovacs-Vajna, Z. M.</creatorcontrib><creatorcontrib>de Leeuw, Dago M.</creatorcontrib><creatorcontrib>Cantatore, E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Torricelli, F.</au><au>Smits, E. C. P.</au><au>Meijboom, J. R.</au><au>Tripathi, A. K.</au><au>Gelinck, G. H.</au><au>Colalongo, L.</au><au>Kovacs-Vajna, Z. M.</au><au>de Leeuw, Dago M.</au><au>Cantatore, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport Physics and Device Modeling of Zinc Oxide Thin-Film Transistors-Part II: Contact Resistance in Short Channel Devices</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>58</volume><issue>9</issue><spage>3025</spage><epage>3033</epage><pages>3025-3033</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Short-channel zinc oxide (ZnO) thin-film transistors (TFTs) are investigated in a wide range of temperatures and bias conditions. Scaling down the channel length, the TFT performance is seriously affected by contact resistances, which depend on gate voltage and temperature. To account for the contact resistances, the transistor is ideally split in three parts. The contact regions are modeled as two separate transistors with a fixed channel length and an exponential distribution of localized states, whereas the channel is treated as reported in Part I. The overall model reproduces the measured characteristics at different channel length, with a single set of physical and geometrical parameters. It can be readily implemented in a circuit simulator. Numerical simulations confirm the validity of the model approach and are used to evaluate the impact of nonidealities at the electrode/semiconductor interface.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2011.2159929</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2011-09, Vol.58 (9), p.3025-3033
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_5975214
source IEEE Electronic Library (IEL)
subjects Activation energy
analytical model
Applied sciences
bottom contact thin-film transistors (TFT)
Channels
Contact
Contact resistance
device simulation
Devices
Electric, optical and optoelectronic circuits
Electrical resistance measurement
Electronics
Exact sciences and technology
field-effect mobility
Logic gates
Mathematical models
Semiconductor device measurement
Semiconductor devices
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
Studies
Temperature measurement
Theoretical study. Circuits analysis and design
Thin films
Transistors
Zinc oxide
zinc oxide (ZnO)
Zinc oxides
title Transport Physics and Device Modeling of Zinc Oxide Thin-Film Transistors-Part II: Contact Resistance in Short Channel Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20Physics%20and%20Device%20Modeling%20of%20Zinc%20Oxide%20Thin-Film%20Transistors-Part%20II:%20Contact%20Resistance%20in%20Short%20Channel%20Devices&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Torricelli,%20F.&rft.date=2011-09-01&rft.volume=58&rft.issue=9&rft.spage=3025&rft.epage=3033&rft.pages=3025-3033&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2011.2159929&rft_dat=%3Cproquest_RIE%3E1671336435%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884677842&rft_id=info:pmid/&rft_ieee_id=5975214&rfr_iscdi=true