Special Killing forms on Lorentzian spin manifolds
The aim of this paper is to give some conformal Killing forms, some Killing and special Killing forms concerning the geometry of Lorentzian spin manifolds admitting imaginary Killing spinors. By the Dirac current flow V φ of an imaginary killing spinor φ. This paper constructs a conformal killing 2-...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2590 |
---|---|
container_issue | |
container_start_page | 2587 |
container_title | |
container_volume | |
creator | Quanxiang Pan Rui Dong Hongjiao Hou |
description | The aim of this paper is to give some conformal Killing forms, some Killing and special Killing forms concerning the geometry of Lorentzian spin manifolds admitting imaginary Killing spinors. By the Dirac current flow V φ of an imaginary killing spinor φ. This paper constructs a conformal killing 2-form and a special killing form on lorentzian spin manifold, also gives a way of construction from special killing form of degree p to special killing form p + k(k + 1). |
doi_str_mv | 10.1109/CSSS.2011.5974754 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5974754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5974754</ieee_id><sourcerecordid>5974754</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-992c99daad9f393875c841985e23ee7eb38977584ffa9018753a9a4b684fe90a3</originalsourceid><addsrcrecordid>eNo1j09LxDAUxCOyoO72A4iXfIHW_GuTd5Sirljw0L0vb9sXibRpafain96C61yG-Q0MDGP3UhRSCnis27YtlJCyKMEaW5ordieNMgZspeGaZWDdf1byhmUpfYlVVeVAm1um2pm6gAN_D8MQ4if30zImPkXeTAvF80_AyNMcIh8xBj8NfdqxjcchUXbxLTu8PB_qfd58vL7VT00eQJxzANUB9Ig9eA3a2bJzRoIrSWkiSyftwNrSGe8RhFx7jYDmVK2EQKDesoe_2UBEx3kJIy7fx8tL_QvmcETa</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Special Killing forms on Lorentzian spin manifolds</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Quanxiang Pan ; Rui Dong ; Hongjiao Hou</creator><creatorcontrib>Quanxiang Pan ; Rui Dong ; Hongjiao Hou</creatorcontrib><description>The aim of this paper is to give some conformal Killing forms, some Killing and special Killing forms concerning the geometry of Lorentzian spin manifolds admitting imaginary Killing spinors. By the Dirac current flow V φ of an imaginary killing spinor φ. This paper constructs a conformal killing 2-form and a special killing form on lorentzian spin manifold, also gives a way of construction from special killing form of degree p to special killing form p + k(k + 1).</description><identifier>ISBN: 9781424497621</identifier><identifier>ISBN: 1424497620</identifier><identifier>EISBN: 1424497639</identifier><identifier>EISBN: 9781424497638</identifier><identifier>EISBN: 9781424497614</identifier><identifier>EISBN: 1424497612</identifier><identifier>DOI: 10.1109/CSSS.2011.5974754</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conformal killing form ; Digital video broadcasting ; Eigenvalues and eigenfunctions ; Equations ; Geometry ; Imaginary killing spinor ; Lorentzian spin manifold ; Manifolds ; Mathematical model</subject><ispartof>2011 International Conference on Computer Science and Service System (CSSS), 2011, p.2587-2590</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5974754$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5974754$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Quanxiang Pan</creatorcontrib><creatorcontrib>Rui Dong</creatorcontrib><creatorcontrib>Hongjiao Hou</creatorcontrib><title>Special Killing forms on Lorentzian spin manifolds</title><title>2011 International Conference on Computer Science and Service System (CSSS)</title><addtitle>CSSS</addtitle><description>The aim of this paper is to give some conformal Killing forms, some Killing and special Killing forms concerning the geometry of Lorentzian spin manifolds admitting imaginary Killing spinors. By the Dirac current flow V φ of an imaginary killing spinor φ. This paper constructs a conformal killing 2-form and a special killing form on lorentzian spin manifold, also gives a way of construction from special killing form of degree p to special killing form p + k(k + 1).</description><subject>Conformal killing form</subject><subject>Digital video broadcasting</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Equations</subject><subject>Geometry</subject><subject>Imaginary killing spinor</subject><subject>Lorentzian spin manifold</subject><subject>Manifolds</subject><subject>Mathematical model</subject><isbn>9781424497621</isbn><isbn>1424497620</isbn><isbn>1424497639</isbn><isbn>9781424497638</isbn><isbn>9781424497614</isbn><isbn>1424497612</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j09LxDAUxCOyoO72A4iXfIHW_GuTd5Sirljw0L0vb9sXibRpafain96C61yG-Q0MDGP3UhRSCnis27YtlJCyKMEaW5ordieNMgZspeGaZWDdf1byhmUpfYlVVeVAm1um2pm6gAN_D8MQ4if30zImPkXeTAvF80_AyNMcIh8xBj8NfdqxjcchUXbxLTu8PB_qfd58vL7VT00eQJxzANUB9Ig9eA3a2bJzRoIrSWkiSyftwNrSGe8RhFx7jYDmVK2EQKDesoe_2UBEx3kJIy7fx8tL_QvmcETa</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Quanxiang Pan</creator><creator>Rui Dong</creator><creator>Hongjiao Hou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Special Killing forms on Lorentzian spin manifolds</title><author>Quanxiang Pan ; Rui Dong ; Hongjiao Hou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-992c99daad9f393875c841985e23ee7eb38977584ffa9018753a9a4b684fe90a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Conformal killing form</topic><topic>Digital video broadcasting</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Equations</topic><topic>Geometry</topic><topic>Imaginary killing spinor</topic><topic>Lorentzian spin manifold</topic><topic>Manifolds</topic><topic>Mathematical model</topic><toplevel>online_resources</toplevel><creatorcontrib>Quanxiang Pan</creatorcontrib><creatorcontrib>Rui Dong</creatorcontrib><creatorcontrib>Hongjiao Hou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quanxiang Pan</au><au>Rui Dong</au><au>Hongjiao Hou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Special Killing forms on Lorentzian spin manifolds</atitle><btitle>2011 International Conference on Computer Science and Service System (CSSS)</btitle><stitle>CSSS</stitle><date>2011-06</date><risdate>2011</risdate><spage>2587</spage><epage>2590</epage><pages>2587-2590</pages><isbn>9781424497621</isbn><isbn>1424497620</isbn><eisbn>1424497639</eisbn><eisbn>9781424497638</eisbn><eisbn>9781424497614</eisbn><eisbn>1424497612</eisbn><abstract>The aim of this paper is to give some conformal Killing forms, some Killing and special Killing forms concerning the geometry of Lorentzian spin manifolds admitting imaginary Killing spinors. By the Dirac current flow V φ of an imaginary killing spinor φ. This paper constructs a conformal killing 2-form and a special killing form on lorentzian spin manifold, also gives a way of construction from special killing form of degree p to special killing form p + k(k + 1).</abstract><pub>IEEE</pub><doi>10.1109/CSSS.2011.5974754</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424497621 |
ispartof | 2011 International Conference on Computer Science and Service System (CSSS), 2011, p.2587-2590 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5974754 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Conformal killing form Digital video broadcasting Eigenvalues and eigenfunctions Equations Geometry Imaginary killing spinor Lorentzian spin manifold Manifolds Mathematical model |
title | Special Killing forms on Lorentzian spin manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Special%20Killing%20forms%20on%20Lorentzian%20spin%20manifolds&rft.btitle=2011%20International%20Conference%20on%20Computer%20Science%20and%20Service%20System%20(CSSS)&rft.au=Quanxiang%20Pan&rft.date=2011-06&rft.spage=2587&rft.epage=2590&rft.pages=2587-2590&rft.isbn=9781424497621&rft.isbn_list=1424497620&rft_id=info:doi/10.1109/CSSS.2011.5974754&rft_dat=%3Cieee_6IE%3E5974754%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424497639&rft.eisbn_list=9781424497638&rft.eisbn_list=9781424497614&rft.eisbn_list=1424497612&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5974754&rfr_iscdi=true |