Special Killing forms on Lorentzian spin manifolds

The aim of this paper is to give some conformal Killing forms, some Killing and special Killing forms concerning the geometry of Lorentzian spin manifolds admitting imaginary Killing spinors. By the Dirac current flow V φ of an imaginary killing spinor φ. This paper constructs a conformal killing 2-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Quanxiang Pan, Rui Dong, Hongjiao Hou
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2590
container_issue
container_start_page 2587
container_title
container_volume
creator Quanxiang Pan
Rui Dong
Hongjiao Hou
description The aim of this paper is to give some conformal Killing forms, some Killing and special Killing forms concerning the geometry of Lorentzian spin manifolds admitting imaginary Killing spinors. By the Dirac current flow V φ of an imaginary killing spinor φ. This paper constructs a conformal killing 2-form and a special killing form on lorentzian spin manifold, also gives a way of construction from special killing form of degree p to special killing form p + k(k + 1).
doi_str_mv 10.1109/CSSS.2011.5974754
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5974754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5974754</ieee_id><sourcerecordid>5974754</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-992c99daad9f393875c841985e23ee7eb38977584ffa9018753a9a4b684fe90a3</originalsourceid><addsrcrecordid>eNo1j09LxDAUxCOyoO72A4iXfIHW_GuTd5Sirljw0L0vb9sXibRpafain96C61yG-Q0MDGP3UhRSCnis27YtlJCyKMEaW5ordieNMgZspeGaZWDdf1byhmUpfYlVVeVAm1um2pm6gAN_D8MQ4if30zImPkXeTAvF80_AyNMcIh8xBj8NfdqxjcchUXbxLTu8PB_qfd58vL7VT00eQJxzANUB9Ig9eA3a2bJzRoIrSWkiSyftwNrSGe8RhFx7jYDmVK2EQKDesoe_2UBEx3kJIy7fx8tL_QvmcETa</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Special Killing forms on Lorentzian spin manifolds</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Quanxiang Pan ; Rui Dong ; Hongjiao Hou</creator><creatorcontrib>Quanxiang Pan ; Rui Dong ; Hongjiao Hou</creatorcontrib><description>The aim of this paper is to give some conformal Killing forms, some Killing and special Killing forms concerning the geometry of Lorentzian spin manifolds admitting imaginary Killing spinors. By the Dirac current flow V φ of an imaginary killing spinor φ. This paper constructs a conformal killing 2-form and a special killing form on lorentzian spin manifold, also gives a way of construction from special killing form of degree p to special killing form p + k(k + 1).</description><identifier>ISBN: 9781424497621</identifier><identifier>ISBN: 1424497620</identifier><identifier>EISBN: 1424497639</identifier><identifier>EISBN: 9781424497638</identifier><identifier>EISBN: 9781424497614</identifier><identifier>EISBN: 1424497612</identifier><identifier>DOI: 10.1109/CSSS.2011.5974754</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conformal killing form ; Digital video broadcasting ; Eigenvalues and eigenfunctions ; Equations ; Geometry ; Imaginary killing spinor ; Lorentzian spin manifold ; Manifolds ; Mathematical model</subject><ispartof>2011 International Conference on Computer Science and Service System (CSSS), 2011, p.2587-2590</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5974754$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5974754$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Quanxiang Pan</creatorcontrib><creatorcontrib>Rui Dong</creatorcontrib><creatorcontrib>Hongjiao Hou</creatorcontrib><title>Special Killing forms on Lorentzian spin manifolds</title><title>2011 International Conference on Computer Science and Service System (CSSS)</title><addtitle>CSSS</addtitle><description>The aim of this paper is to give some conformal Killing forms, some Killing and special Killing forms concerning the geometry of Lorentzian spin manifolds admitting imaginary Killing spinors. By the Dirac current flow V φ of an imaginary killing spinor φ. This paper constructs a conformal killing 2-form and a special killing form on lorentzian spin manifold, also gives a way of construction from special killing form of degree p to special killing form p + k(k + 1).</description><subject>Conformal killing form</subject><subject>Digital video broadcasting</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Equations</subject><subject>Geometry</subject><subject>Imaginary killing spinor</subject><subject>Lorentzian spin manifold</subject><subject>Manifolds</subject><subject>Mathematical model</subject><isbn>9781424497621</isbn><isbn>1424497620</isbn><isbn>1424497639</isbn><isbn>9781424497638</isbn><isbn>9781424497614</isbn><isbn>1424497612</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j09LxDAUxCOyoO72A4iXfIHW_GuTd5Sirljw0L0vb9sXibRpafain96C61yG-Q0MDGP3UhRSCnis27YtlJCyKMEaW5ordieNMgZspeGaZWDdf1byhmUpfYlVVeVAm1um2pm6gAN_D8MQ4if30zImPkXeTAvF80_AyNMcIh8xBj8NfdqxjcchUXbxLTu8PB_qfd58vL7VT00eQJxzANUB9Ig9eA3a2bJzRoIrSWkiSyftwNrSGe8RhFx7jYDmVK2EQKDesoe_2UBEx3kJIy7fx8tL_QvmcETa</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Quanxiang Pan</creator><creator>Rui Dong</creator><creator>Hongjiao Hou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Special Killing forms on Lorentzian spin manifolds</title><author>Quanxiang Pan ; Rui Dong ; Hongjiao Hou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-992c99daad9f393875c841985e23ee7eb38977584ffa9018753a9a4b684fe90a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Conformal killing form</topic><topic>Digital video broadcasting</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Equations</topic><topic>Geometry</topic><topic>Imaginary killing spinor</topic><topic>Lorentzian spin manifold</topic><topic>Manifolds</topic><topic>Mathematical model</topic><toplevel>online_resources</toplevel><creatorcontrib>Quanxiang Pan</creatorcontrib><creatorcontrib>Rui Dong</creatorcontrib><creatorcontrib>Hongjiao Hou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quanxiang Pan</au><au>Rui Dong</au><au>Hongjiao Hou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Special Killing forms on Lorentzian spin manifolds</atitle><btitle>2011 International Conference on Computer Science and Service System (CSSS)</btitle><stitle>CSSS</stitle><date>2011-06</date><risdate>2011</risdate><spage>2587</spage><epage>2590</epage><pages>2587-2590</pages><isbn>9781424497621</isbn><isbn>1424497620</isbn><eisbn>1424497639</eisbn><eisbn>9781424497638</eisbn><eisbn>9781424497614</eisbn><eisbn>1424497612</eisbn><abstract>The aim of this paper is to give some conformal Killing forms, some Killing and special Killing forms concerning the geometry of Lorentzian spin manifolds admitting imaginary Killing spinors. By the Dirac current flow V φ of an imaginary killing spinor φ. This paper constructs a conformal killing 2-form and a special killing form on lorentzian spin manifold, also gives a way of construction from special killing form of degree p to special killing form p + k(k + 1).</abstract><pub>IEEE</pub><doi>10.1109/CSSS.2011.5974754</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424497621
ispartof 2011 International Conference on Computer Science and Service System (CSSS), 2011, p.2587-2590
issn
language eng
recordid cdi_ieee_primary_5974754
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Conformal killing form
Digital video broadcasting
Eigenvalues and eigenfunctions
Equations
Geometry
Imaginary killing spinor
Lorentzian spin manifold
Manifolds
Mathematical model
title Special Killing forms on Lorentzian spin manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Special%20Killing%20forms%20on%20Lorentzian%20spin%20manifolds&rft.btitle=2011%20International%20Conference%20on%20Computer%20Science%20and%20Service%20System%20(CSSS)&rft.au=Quanxiang%20Pan&rft.date=2011-06&rft.spage=2587&rft.epage=2590&rft.pages=2587-2590&rft.isbn=9781424497621&rft.isbn_list=1424497620&rft_id=info:doi/10.1109/CSSS.2011.5974754&rft_dat=%3Cieee_6IE%3E5974754%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424497639&rft.eisbn_list=9781424497638&rft.eisbn_list=9781424497614&rft.eisbn_list=1424497612&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5974754&rfr_iscdi=true