Depth and image focus enhancement for digital cameras

Mostly, Shape From Focus (SFF) algorithms use local averaging using a fixed rectangle window to enhance the initial focus volume. In this linear filtering, the window size largely affects the accuracy of the depth map. A small window is unable to suppress the noise properly while a large window over...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mahmood, M. T., Seongo Shim, Tae-Sun Choi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue
container_start_page 50
container_title
container_volume
creator Mahmood, M. T.
Seongo Shim
Tae-Sun Choi
description Mostly, Shape From Focus (SFF) algorithms use local averaging using a fixed rectangle window to enhance the initial focus volume. In this linear filtering, the window size largely affects the accuracy of the depth map. A small window is unable to suppress the noise properly while a large window over smoothes the object shape. Moreover, the use of any window size smoothes focus values uniformly. Consequently, an erroneous depth map is obtained. In this paper, we suggest the use of iterative 3D Anisotropic Nonlinear Diffusion (AND) to enhance the image focus volume. In contrast to the linear filtering, AND utilizes the local structure of the focus values to suppress the noise while preserving edges. The proposed scheme is tested using image sequences of synthetic and real objects and results have demonstrated its effectiveness.
doi_str_mv 10.1109/ISCE.2011.5973781
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5973781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5973781</ieee_id><sourcerecordid>5973781</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f51f18c7140cdd78004a7036cf8be96fe180ed35b1050a40a9469dcf8a9e7963</originalsourceid><addsrcrecordid>eNo1j81Kw0AUhcc_MNY8gLiZF0i8N_N7l1KrFgou6sJdmc7ctJEmliQufHsD1rM5cD44nCPEHUKJCPSwXM8XZQWIpSGnnMczkdNkFiuvvUY6F1mFhgrUlboQN_9AmUuRgdOusNZ_XIt8GD5hkrUElc6EeeLjuJehS7Jpw45l_RW_B8ndPnSRW-7GKellanbNGA4yhpb7MNyKqzocBs5PPhPr58X7_LVYvb0s54-roiEYi9pgjT461BBTch5ABwfKxtpvmWzN6IGTMlsEA0FDIG0pTTQQO7JqJu7_Whtm3hz7aWD_szn9V7-AlklK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Depth and image focus enhancement for digital cameras</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mahmood, M. T. ; Seongo Shim ; Tae-Sun Choi</creator><creatorcontrib>Mahmood, M. T. ; Seongo Shim ; Tae-Sun Choi</creatorcontrib><description>Mostly, Shape From Focus (SFF) algorithms use local averaging using a fixed rectangle window to enhance the initial focus volume. In this linear filtering, the window size largely affects the accuracy of the depth map. A small window is unable to suppress the noise properly while a large window over smoothes the object shape. Moreover, the use of any window size smoothes focus values uniformly. Consequently, an erroneous depth map is obtained. In this paper, we suggest the use of iterative 3D Anisotropic Nonlinear Diffusion (AND) to enhance the image focus volume. In contrast to the linear filtering, AND utilizes the local structure of the focus values to suppress the noise while preserving edges. The proposed scheme is tested using image sequences of synthetic and real objects and results have demonstrated its effectiveness.</description><identifier>ISSN: 0747-668X</identifier><identifier>ISBN: 1612848435</identifier><identifier>ISBN: 9781612848433</identifier><identifier>EISSN: 2159-1423</identifier><identifier>EISBN: 9781612848419</identifier><identifier>EISBN: 1612848419</identifier><identifier>EISBN: 1612848427</identifier><identifier>EISBN: 9781612848426</identifier><identifier>DOI: 10.1109/ISCE.2011.5973781</identifier><language>eng</language><publisher>IEEE</publisher><subject>Lenses ; Maximum likelihood detection ; Optical filters ; Optical variables measurement ; Shape ; Smoothing methods ; Three dimensional displays</subject><ispartof>2011 IEEE 15th International Symposium on Consumer Electronics (ISCE), 2011, p.50-53</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5973781$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,792,2052,27902,54733,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5973781$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mahmood, M. T.</creatorcontrib><creatorcontrib>Seongo Shim</creatorcontrib><creatorcontrib>Tae-Sun Choi</creatorcontrib><title>Depth and image focus enhancement for digital cameras</title><title>2011 IEEE 15th International Symposium on Consumer Electronics (ISCE)</title><addtitle>ISCE</addtitle><description>Mostly, Shape From Focus (SFF) algorithms use local averaging using a fixed rectangle window to enhance the initial focus volume. In this linear filtering, the window size largely affects the accuracy of the depth map. A small window is unable to suppress the noise properly while a large window over smoothes the object shape. Moreover, the use of any window size smoothes focus values uniformly. Consequently, an erroneous depth map is obtained. In this paper, we suggest the use of iterative 3D Anisotropic Nonlinear Diffusion (AND) to enhance the image focus volume. In contrast to the linear filtering, AND utilizes the local structure of the focus values to suppress the noise while preserving edges. The proposed scheme is tested using image sequences of synthetic and real objects and results have demonstrated its effectiveness.</description><subject>Lenses</subject><subject>Maximum likelihood detection</subject><subject>Optical filters</subject><subject>Optical variables measurement</subject><subject>Shape</subject><subject>Smoothing methods</subject><subject>Three dimensional displays</subject><issn>0747-668X</issn><issn>2159-1423</issn><isbn>1612848435</isbn><isbn>9781612848433</isbn><isbn>9781612848419</isbn><isbn>1612848419</isbn><isbn>1612848427</isbn><isbn>9781612848426</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81Kw0AUhcc_MNY8gLiZF0i8N_N7l1KrFgou6sJdmc7ctJEmliQufHsD1rM5cD44nCPEHUKJCPSwXM8XZQWIpSGnnMczkdNkFiuvvUY6F1mFhgrUlboQN_9AmUuRgdOusNZ_XIt8GD5hkrUElc6EeeLjuJehS7Jpw45l_RW_B8ndPnSRW-7GKellanbNGA4yhpb7MNyKqzocBs5PPhPr58X7_LVYvb0s54-roiEYi9pgjT461BBTch5ABwfKxtpvmWzN6IGTMlsEA0FDIG0pTTQQO7JqJu7_Whtm3hz7aWD_szn9V7-AlklK</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Mahmood, M. T.</creator><creator>Seongo Shim</creator><creator>Tae-Sun Choi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Depth and image focus enhancement for digital cameras</title><author>Mahmood, M. T. ; Seongo Shim ; Tae-Sun Choi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f51f18c7140cdd78004a7036cf8be96fe180ed35b1050a40a9469dcf8a9e7963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Lenses</topic><topic>Maximum likelihood detection</topic><topic>Optical filters</topic><topic>Optical variables measurement</topic><topic>Shape</topic><topic>Smoothing methods</topic><topic>Three dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahmood, M. T.</creatorcontrib><creatorcontrib>Seongo Shim</creatorcontrib><creatorcontrib>Tae-Sun Choi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mahmood, M. T.</au><au>Seongo Shim</au><au>Tae-Sun Choi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Depth and image focus enhancement for digital cameras</atitle><btitle>2011 IEEE 15th International Symposium on Consumer Electronics (ISCE)</btitle><stitle>ISCE</stitle><date>2011-06</date><risdate>2011</risdate><spage>50</spage><epage>53</epage><pages>50-53</pages><issn>0747-668X</issn><eissn>2159-1423</eissn><isbn>1612848435</isbn><isbn>9781612848433</isbn><eisbn>9781612848419</eisbn><eisbn>1612848419</eisbn><eisbn>1612848427</eisbn><eisbn>9781612848426</eisbn><abstract>Mostly, Shape From Focus (SFF) algorithms use local averaging using a fixed rectangle window to enhance the initial focus volume. In this linear filtering, the window size largely affects the accuracy of the depth map. A small window is unable to suppress the noise properly while a large window over smoothes the object shape. Moreover, the use of any window size smoothes focus values uniformly. Consequently, an erroneous depth map is obtained. In this paper, we suggest the use of iterative 3D Anisotropic Nonlinear Diffusion (AND) to enhance the image focus volume. In contrast to the linear filtering, AND utilizes the local structure of the focus values to suppress the noise while preserving edges. The proposed scheme is tested using image sequences of synthetic and real objects and results have demonstrated its effectiveness.</abstract><pub>IEEE</pub><doi>10.1109/ISCE.2011.5973781</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0747-668X
ispartof 2011 IEEE 15th International Symposium on Consumer Electronics (ISCE), 2011, p.50-53
issn 0747-668X
2159-1423
language eng
recordid cdi_ieee_primary_5973781
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Lenses
Maximum likelihood detection
Optical filters
Optical variables measurement
Shape
Smoothing methods
Three dimensional displays
title Depth and image focus enhancement for digital cameras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A40%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Depth%20and%20image%20focus%20enhancement%20for%20digital%20cameras&rft.btitle=2011%20IEEE%2015th%20International%20Symposium%20on%20Consumer%20Electronics%20(ISCE)&rft.au=Mahmood,%20M.%20T.&rft.date=2011-06&rft.spage=50&rft.epage=53&rft.pages=50-53&rft.issn=0747-668X&rft.eissn=2159-1423&rft.isbn=1612848435&rft.isbn_list=9781612848433&rft_id=info:doi/10.1109/ISCE.2011.5973781&rft_dat=%3Cieee_6IE%3E5973781%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612848419&rft.eisbn_list=1612848419&rft.eisbn_list=1612848427&rft.eisbn_list=9781612848426&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5973781&rfr_iscdi=true