Systematic estimation of memory effects parameters in power amplifiers' behavioral models
This paper deals with systematic behavioral modeling of power amplifiers through the study of the parameters involved in the memory effects phenomenon and the appropriate method for their estimation. The gained knowledge is integrated in both memory polynomial and real-valued time-delay neural netwo...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Fehri, B. Boumaiza, S. |
description | This paper deals with systematic behavioral modeling of power amplifiers through the study of the parameters involved in the memory effects phenomenon and the appropriate method for their estimation. The gained knowledge is integrated in both memory polynomial and real-valued time-delay neural network models; and, their linearization capability is investigated and compared to their empirical non-system based counterparts. According to the measurement results, the memory polynomial was required to be over dimensioned to achieve the same linearization performance obtained using a system memory parameters based one. It is also shown that the integration of prior knowledge of system to be modeled reduces the complexity and improves model robustness. |
doi_str_mv | 10.1109/MWSYM.2011.5972927 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5972927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5972927</ieee_id><sourcerecordid>5972927</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7c8ce931bfc9e14283e91dfaa6363548e03cfc6f04ce28b44174e100c9fc36a53</originalsourceid><addsrcrecordid>eNpFUEtLAzEYjC-w1v4BveTmaWu-PDdHKfUBLR5a0J5KNv2Ckd3ukixK_70rFpzLDDMwMEPIDbApALP3y7fVZjnlDGCqrOGWmxNyBRp4KY1S_JSMuDK6MBz02X8g5TkZMZC20FK9X5JJzp9sgNbWKjEim9Uh99i4PnqKuY-_qt3TNtAGmzYdKIaAvs-0c8k12GPKNO5p135joq7p6hji4N3RCj_cV2yTq2nT7rDO1-QiuDrj5Mhjsn6cr2fPxeL16WX2sCiiZX1hfOnRCqiCtwiSlwIt7IJzWmihZIlM-OB1YNIjLyspwUgExrwNXminxJjc_tVGRNx2aViQDtvjQ-IHyD5YQA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Systematic estimation of memory effects parameters in power amplifiers' behavioral models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fehri, B. ; Boumaiza, S.</creator><creatorcontrib>Fehri, B. ; Boumaiza, S.</creatorcontrib><description>This paper deals with systematic behavioral modeling of power amplifiers through the study of the parameters involved in the memory effects phenomenon and the appropriate method for their estimation. The gained knowledge is integrated in both memory polynomial and real-valued time-delay neural network models; and, their linearization capability is investigated and compared to their empirical non-system based counterparts. According to the measurement results, the memory polynomial was required to be over dimensioned to achieve the same linearization performance obtained using a system memory parameters based one. It is also shown that the integration of prior knowledge of system to be modeled reduces the complexity and improves model robustness.</description><identifier>ISSN: 0149-645X</identifier><identifier>ISBN: 1612847544</identifier><identifier>ISBN: 9781612847542</identifier><identifier>EISSN: 2576-7216</identifier><identifier>EISBN: 1612847552</identifier><identifier>EISBN: 9781612847566</identifier><identifier>EISBN: 9781612847573</identifier><identifier>EISBN: 9781612847559</identifier><identifier>EISBN: 1612847579</identifier><identifier>EISBN: 1612847560</identifier><identifier>DOI: 10.1109/MWSYM.2011.5972927</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; behavioral modeling ; embedding dimension ; Estimation ; false nearest neighbor ; memory lag ; mutual information ; Nonlinear dynamical systems ; Polynomials ; Power amplifiers ; Systematics</subject><ispartof>2011 IEEE MTT-S International Microwave Symposium, 2011, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5972927$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5972927$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fehri, B.</creatorcontrib><creatorcontrib>Boumaiza, S.</creatorcontrib><title>Systematic estimation of memory effects parameters in power amplifiers' behavioral models</title><title>2011 IEEE MTT-S International Microwave Symposium</title><addtitle>MWSYM</addtitle><description>This paper deals with systematic behavioral modeling of power amplifiers through the study of the parameters involved in the memory effects phenomenon and the appropriate method for their estimation. The gained knowledge is integrated in both memory polynomial and real-valued time-delay neural network models; and, their linearization capability is investigated and compared to their empirical non-system based counterparts. According to the measurement results, the memory polynomial was required to be over dimensioned to achieve the same linearization performance obtained using a system memory parameters based one. It is also shown that the integration of prior knowledge of system to be modeled reduces the complexity and improves model robustness.</description><subject>Artificial neural networks</subject><subject>behavioral modeling</subject><subject>embedding dimension</subject><subject>Estimation</subject><subject>false nearest neighbor</subject><subject>memory lag</subject><subject>mutual information</subject><subject>Nonlinear dynamical systems</subject><subject>Polynomials</subject><subject>Power amplifiers</subject><subject>Systematics</subject><issn>0149-645X</issn><issn>2576-7216</issn><isbn>1612847544</isbn><isbn>9781612847542</isbn><isbn>1612847552</isbn><isbn>9781612847566</isbn><isbn>9781612847573</isbn><isbn>9781612847559</isbn><isbn>1612847579</isbn><isbn>1612847560</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUEtLAzEYjC-w1v4BveTmaWu-PDdHKfUBLR5a0J5KNv2Ckd3ukixK_70rFpzLDDMwMEPIDbApALP3y7fVZjnlDGCqrOGWmxNyBRp4KY1S_JSMuDK6MBz02X8g5TkZMZC20FK9X5JJzp9sgNbWKjEim9Uh99i4PnqKuY-_qt3TNtAGmzYdKIaAvs-0c8k12GPKNO5p135joq7p6hji4N3RCj_cV2yTq2nT7rDO1-QiuDrj5Mhjsn6cr2fPxeL16WX2sCiiZX1hfOnRCqiCtwiSlwIt7IJzWmihZIlM-OB1YNIjLyspwUgExrwNXminxJjc_tVGRNx2aViQDtvjQ-IHyD5YQA</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Fehri, B.</creator><creator>Boumaiza, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201106</creationdate><title>Systematic estimation of memory effects parameters in power amplifiers' behavioral models</title><author>Fehri, B. ; Boumaiza, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7c8ce931bfc9e14283e91dfaa6363548e03cfc6f04ce28b44174e100c9fc36a53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial neural networks</topic><topic>behavioral modeling</topic><topic>embedding dimension</topic><topic>Estimation</topic><topic>false nearest neighbor</topic><topic>memory lag</topic><topic>mutual information</topic><topic>Nonlinear dynamical systems</topic><topic>Polynomials</topic><topic>Power amplifiers</topic><topic>Systematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Fehri, B.</creatorcontrib><creatorcontrib>Boumaiza, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fehri, B.</au><au>Boumaiza, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Systematic estimation of memory effects parameters in power amplifiers' behavioral models</atitle><btitle>2011 IEEE MTT-S International Microwave Symposium</btitle><stitle>MWSYM</stitle><date>2011-06</date><risdate>2011</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0149-645X</issn><eissn>2576-7216</eissn><isbn>1612847544</isbn><isbn>9781612847542</isbn><eisbn>1612847552</eisbn><eisbn>9781612847566</eisbn><eisbn>9781612847573</eisbn><eisbn>9781612847559</eisbn><eisbn>1612847579</eisbn><eisbn>1612847560</eisbn><abstract>This paper deals with systematic behavioral modeling of power amplifiers through the study of the parameters involved in the memory effects phenomenon and the appropriate method for their estimation. The gained knowledge is integrated in both memory polynomial and real-valued time-delay neural network models; and, their linearization capability is investigated and compared to their empirical non-system based counterparts. According to the measurement results, the memory polynomial was required to be over dimensioned to achieve the same linearization performance obtained using a system memory parameters based one. It is also shown that the integration of prior knowledge of system to be modeled reduces the complexity and improves model robustness.</abstract><pub>IEEE</pub><doi>10.1109/MWSYM.2011.5972927</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0149-645X |
ispartof | 2011 IEEE MTT-S International Microwave Symposium, 2011, p.1-4 |
issn | 0149-645X 2576-7216 |
language | eng |
recordid | cdi_ieee_primary_5972927 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks behavioral modeling embedding dimension Estimation false nearest neighbor memory lag mutual information Nonlinear dynamical systems Polynomials Power amplifiers Systematics |
title | Systematic estimation of memory effects parameters in power amplifiers' behavioral models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Systematic%20estimation%20of%20memory%20effects%20parameters%20in%20power%20amplifiers'%20behavioral%20models&rft.btitle=2011%20IEEE%20MTT-S%20International%20Microwave%20Symposium&rft.au=Fehri,%20B.&rft.date=2011-06&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0149-645X&rft.eissn=2576-7216&rft.isbn=1612847544&rft.isbn_list=9781612847542&rft_id=info:doi/10.1109/MWSYM.2011.5972927&rft_dat=%3Cieee_6IE%3E5972927%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612847552&rft.eisbn_list=9781612847566&rft.eisbn_list=9781612847573&rft.eisbn_list=9781612847559&rft.eisbn_list=1612847579&rft.eisbn_list=1612847560&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5972927&rfr_iscdi=true |