Systematic estimation of memory effects parameters in power amplifiers' behavioral models

This paper deals with systematic behavioral modeling of power amplifiers through the study of the parameters involved in the memory effects phenomenon and the appropriate method for their estimation. The gained knowledge is integrated in both memory polynomial and real-valued time-delay neural netwo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fehri, B., Boumaiza, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Fehri, B.
Boumaiza, S.
description This paper deals with systematic behavioral modeling of power amplifiers through the study of the parameters involved in the memory effects phenomenon and the appropriate method for their estimation. The gained knowledge is integrated in both memory polynomial and real-valued time-delay neural network models; and, their linearization capability is investigated and compared to their empirical non-system based counterparts. According to the measurement results, the memory polynomial was required to be over dimensioned to achieve the same linearization performance obtained using a system memory parameters based one. It is also shown that the integration of prior knowledge of system to be modeled reduces the complexity and improves model robustness.
doi_str_mv 10.1109/MWSYM.2011.5972927
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5972927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5972927</ieee_id><sourcerecordid>5972927</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7c8ce931bfc9e14283e91dfaa6363548e03cfc6f04ce28b44174e100c9fc36a53</originalsourceid><addsrcrecordid>eNpFUEtLAzEYjC-w1v4BveTmaWu-PDdHKfUBLR5a0J5KNv2Ckd3ukixK_70rFpzLDDMwMEPIDbApALP3y7fVZjnlDGCqrOGWmxNyBRp4KY1S_JSMuDK6MBz02X8g5TkZMZC20FK9X5JJzp9sgNbWKjEim9Uh99i4PnqKuY-_qt3TNtAGmzYdKIaAvs-0c8k12GPKNO5p135joq7p6hji4N3RCj_cV2yTq2nT7rDO1-QiuDrj5Mhjsn6cr2fPxeL16WX2sCiiZX1hfOnRCqiCtwiSlwIt7IJzWmihZIlM-OB1YNIjLyspwUgExrwNXminxJjc_tVGRNx2aViQDtvjQ-IHyD5YQA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Systematic estimation of memory effects parameters in power amplifiers' behavioral models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fehri, B. ; Boumaiza, S.</creator><creatorcontrib>Fehri, B. ; Boumaiza, S.</creatorcontrib><description>This paper deals with systematic behavioral modeling of power amplifiers through the study of the parameters involved in the memory effects phenomenon and the appropriate method for their estimation. The gained knowledge is integrated in both memory polynomial and real-valued time-delay neural network models; and, their linearization capability is investigated and compared to their empirical non-system based counterparts. According to the measurement results, the memory polynomial was required to be over dimensioned to achieve the same linearization performance obtained using a system memory parameters based one. It is also shown that the integration of prior knowledge of system to be modeled reduces the complexity and improves model robustness.</description><identifier>ISSN: 0149-645X</identifier><identifier>ISBN: 1612847544</identifier><identifier>ISBN: 9781612847542</identifier><identifier>EISSN: 2576-7216</identifier><identifier>EISBN: 1612847552</identifier><identifier>EISBN: 9781612847566</identifier><identifier>EISBN: 9781612847573</identifier><identifier>EISBN: 9781612847559</identifier><identifier>EISBN: 1612847579</identifier><identifier>EISBN: 1612847560</identifier><identifier>DOI: 10.1109/MWSYM.2011.5972927</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; behavioral modeling ; embedding dimension ; Estimation ; false nearest neighbor ; memory lag ; mutual information ; Nonlinear dynamical systems ; Polynomials ; Power amplifiers ; Systematics</subject><ispartof>2011 IEEE MTT-S International Microwave Symposium, 2011, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5972927$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5972927$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fehri, B.</creatorcontrib><creatorcontrib>Boumaiza, S.</creatorcontrib><title>Systematic estimation of memory effects parameters in power amplifiers' behavioral models</title><title>2011 IEEE MTT-S International Microwave Symposium</title><addtitle>MWSYM</addtitle><description>This paper deals with systematic behavioral modeling of power amplifiers through the study of the parameters involved in the memory effects phenomenon and the appropriate method for their estimation. The gained knowledge is integrated in both memory polynomial and real-valued time-delay neural network models; and, their linearization capability is investigated and compared to their empirical non-system based counterparts. According to the measurement results, the memory polynomial was required to be over dimensioned to achieve the same linearization performance obtained using a system memory parameters based one. It is also shown that the integration of prior knowledge of system to be modeled reduces the complexity and improves model robustness.</description><subject>Artificial neural networks</subject><subject>behavioral modeling</subject><subject>embedding dimension</subject><subject>Estimation</subject><subject>false nearest neighbor</subject><subject>memory lag</subject><subject>mutual information</subject><subject>Nonlinear dynamical systems</subject><subject>Polynomials</subject><subject>Power amplifiers</subject><subject>Systematics</subject><issn>0149-645X</issn><issn>2576-7216</issn><isbn>1612847544</isbn><isbn>9781612847542</isbn><isbn>1612847552</isbn><isbn>9781612847566</isbn><isbn>9781612847573</isbn><isbn>9781612847559</isbn><isbn>1612847579</isbn><isbn>1612847560</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUEtLAzEYjC-w1v4BveTmaWu-PDdHKfUBLR5a0J5KNv2Ckd3ukixK_70rFpzLDDMwMEPIDbApALP3y7fVZjnlDGCqrOGWmxNyBRp4KY1S_JSMuDK6MBz02X8g5TkZMZC20FK9X5JJzp9sgNbWKjEim9Uh99i4PnqKuY-_qt3TNtAGmzYdKIaAvs-0c8k12GPKNO5p135joq7p6hji4N3RCj_cV2yTq2nT7rDO1-QiuDrj5Mhjsn6cr2fPxeL16WX2sCiiZX1hfOnRCqiCtwiSlwIt7IJzWmihZIlM-OB1YNIjLyspwUgExrwNXminxJjc_tVGRNx2aViQDtvjQ-IHyD5YQA</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Fehri, B.</creator><creator>Boumaiza, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201106</creationdate><title>Systematic estimation of memory effects parameters in power amplifiers' behavioral models</title><author>Fehri, B. ; Boumaiza, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7c8ce931bfc9e14283e91dfaa6363548e03cfc6f04ce28b44174e100c9fc36a53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial neural networks</topic><topic>behavioral modeling</topic><topic>embedding dimension</topic><topic>Estimation</topic><topic>false nearest neighbor</topic><topic>memory lag</topic><topic>mutual information</topic><topic>Nonlinear dynamical systems</topic><topic>Polynomials</topic><topic>Power amplifiers</topic><topic>Systematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Fehri, B.</creatorcontrib><creatorcontrib>Boumaiza, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fehri, B.</au><au>Boumaiza, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Systematic estimation of memory effects parameters in power amplifiers' behavioral models</atitle><btitle>2011 IEEE MTT-S International Microwave Symposium</btitle><stitle>MWSYM</stitle><date>2011-06</date><risdate>2011</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0149-645X</issn><eissn>2576-7216</eissn><isbn>1612847544</isbn><isbn>9781612847542</isbn><eisbn>1612847552</eisbn><eisbn>9781612847566</eisbn><eisbn>9781612847573</eisbn><eisbn>9781612847559</eisbn><eisbn>1612847579</eisbn><eisbn>1612847560</eisbn><abstract>This paper deals with systematic behavioral modeling of power amplifiers through the study of the parameters involved in the memory effects phenomenon and the appropriate method for their estimation. The gained knowledge is integrated in both memory polynomial and real-valued time-delay neural network models; and, their linearization capability is investigated and compared to their empirical non-system based counterparts. According to the measurement results, the memory polynomial was required to be over dimensioned to achieve the same linearization performance obtained using a system memory parameters based one. It is also shown that the integration of prior knowledge of system to be modeled reduces the complexity and improves model robustness.</abstract><pub>IEEE</pub><doi>10.1109/MWSYM.2011.5972927</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0149-645X
ispartof 2011 IEEE MTT-S International Microwave Symposium, 2011, p.1-4
issn 0149-645X
2576-7216
language eng
recordid cdi_ieee_primary_5972927
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
behavioral modeling
embedding dimension
Estimation
false nearest neighbor
memory lag
mutual information
Nonlinear dynamical systems
Polynomials
Power amplifiers
Systematics
title Systematic estimation of memory effects parameters in power amplifiers' behavioral models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Systematic%20estimation%20of%20memory%20effects%20parameters%20in%20power%20amplifiers'%20behavioral%20models&rft.btitle=2011%20IEEE%20MTT-S%20International%20Microwave%20Symposium&rft.au=Fehri,%20B.&rft.date=2011-06&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0149-645X&rft.eissn=2576-7216&rft.isbn=1612847544&rft.isbn_list=9781612847542&rft_id=info:doi/10.1109/MWSYM.2011.5972927&rft_dat=%3Cieee_6IE%3E5972927%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612847552&rft.eisbn_list=9781612847566&rft.eisbn_list=9781612847573&rft.eisbn_list=9781612847559&rft.eisbn_list=1612847579&rft.eisbn_list=1612847560&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5972927&rfr_iscdi=true