Use of fuzzy min-max neural network for speaker identification

This paper presents the use of fuzzy min-max neural network for the text independent speaker identification. The fuzzy min-max neural network utilizes fuzzy sets as pattern classes. It is a three layer feedforward network that grows adaptively to meet the demands of the problem. The database contain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jawarkar, N. P., Holambe, R. S., Basu, T. K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182
container_issue
container_start_page 178
container_title
container_volume
creator Jawarkar, N. P.
Holambe, R. S.
Basu, T. K.
description This paper presents the use of fuzzy min-max neural network for the text independent speaker identification. The fuzzy min-max neural network utilizes fuzzy sets as pattern classes. It is a three layer feedforward network that grows adaptively to meet the demands of the problem. The database containing speech utterances recorded from fifty speakers in Marathi language is used for experimentation. Mel frequency cepstral coefficients that represent short time spectrum are used as features for identification. The results obtained with fuzzy min-max neural network are compared with Gaussian mixture model. It is observed that fuzzy neural network outperforms the Gaussian mixture model and attains the identification accuracy of 99.99% with 15 second speech utterance.
doi_str_mv 10.1109/ICRTIT.2011.5972455
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5972455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5972455</ieee_id><sourcerecordid>5972455</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-fba758eeda7e071471f42387e8fc48e039bc5d955d06be3544aa8788270788af3</originalsourceid><addsrcrecordid>eNo1j81Kw0AUhUekoLZ5gm7mBRLnNzOzESSoDRQEietyk9yBsU1SJinaPr0B61mcj29z4BCy5izjnLnHsvioyioTjPNMOyOU1jfkgSttDNPWyVuSOGP_3eo7kozjF5uT5y4X4p48fY5IB0_96XI50y70aQc_tMdThMOM6XuIe-qHSMcjwh4jDS32U_ChgSkM_YosPBxGTK5ckur1pSo26fb9rSyet2lwbEp9DUZbxBYMMsOV4V4JaQ1a3yiLTLq60a3TumV5jVIrBWCNtcKwucHLJVn_zQZE3B1j6CCed9fH8he4AUpb</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Use of fuzzy min-max neural network for speaker identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jawarkar, N. P. ; Holambe, R. S. ; Basu, T. K.</creator><creatorcontrib>Jawarkar, N. P. ; Holambe, R. S. ; Basu, T. K.</creatorcontrib><description>This paper presents the use of fuzzy min-max neural network for the text independent speaker identification. The fuzzy min-max neural network utilizes fuzzy sets as pattern classes. It is a three layer feedforward network that grows adaptively to meet the demands of the problem. The database containing speech utterances recorded from fifty speakers in Marathi language is used for experimentation. Mel frequency cepstral coefficients that represent short time spectrum are used as features for identification. The results obtained with fuzzy min-max neural network are compared with Gaussian mixture model. It is observed that fuzzy neural network outperforms the Gaussian mixture model and attains the identification accuracy of 99.99% with 15 second speech utterance.</description><identifier>ISBN: 9781457705885</identifier><identifier>ISBN: 1457705885</identifier><identifier>EISBN: 1457705893</identifier><identifier>EISBN: 1457705907</identifier><identifier>EISBN: 9781457705908</identifier><identifier>EISBN: 9781457705892</identifier><identifier>DOI: 10.1109/ICRTIT.2011.5972455</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Cepstral analysis ; classification ; Feature extraction ; fuzzy neural networks ; Hidden Markov models ; MFCC ; speaker identification ; Speaker recognition ; Speech ; Speech processing</subject><ispartof>2011 International Conference on Recent Trends in Information Technology (ICRTIT), 2011, p.178-182</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5972455$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5972455$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jawarkar, N. P.</creatorcontrib><creatorcontrib>Holambe, R. S.</creatorcontrib><creatorcontrib>Basu, T. K.</creatorcontrib><title>Use of fuzzy min-max neural network for speaker identification</title><title>2011 International Conference on Recent Trends in Information Technology (ICRTIT)</title><addtitle>ICRTIT</addtitle><description>This paper presents the use of fuzzy min-max neural network for the text independent speaker identification. The fuzzy min-max neural network utilizes fuzzy sets as pattern classes. It is a three layer feedforward network that grows adaptively to meet the demands of the problem. The database containing speech utterances recorded from fifty speakers in Marathi language is used for experimentation. Mel frequency cepstral coefficients that represent short time spectrum are used as features for identification. The results obtained with fuzzy min-max neural network are compared with Gaussian mixture model. It is observed that fuzzy neural network outperforms the Gaussian mixture model and attains the identification accuracy of 99.99% with 15 second speech utterance.</description><subject>Artificial neural networks</subject><subject>Cepstral analysis</subject><subject>classification</subject><subject>Feature extraction</subject><subject>fuzzy neural networks</subject><subject>Hidden Markov models</subject><subject>MFCC</subject><subject>speaker identification</subject><subject>Speaker recognition</subject><subject>Speech</subject><subject>Speech processing</subject><isbn>9781457705885</isbn><isbn>1457705885</isbn><isbn>1457705893</isbn><isbn>1457705907</isbn><isbn>9781457705908</isbn><isbn>9781457705892</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81Kw0AUhUekoLZ5gm7mBRLnNzOzESSoDRQEietyk9yBsU1SJinaPr0B61mcj29z4BCy5izjnLnHsvioyioTjPNMOyOU1jfkgSttDNPWyVuSOGP_3eo7kozjF5uT5y4X4p48fY5IB0_96XI50y70aQc_tMdThMOM6XuIe-qHSMcjwh4jDS32U_ChgSkM_YosPBxGTK5ckur1pSo26fb9rSyet2lwbEp9DUZbxBYMMsOV4V4JaQ1a3yiLTLq60a3TumV5jVIrBWCNtcKwucHLJVn_zQZE3B1j6CCed9fH8he4AUpb</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Jawarkar, N. P.</creator><creator>Holambe, R. S.</creator><creator>Basu, T. K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Use of fuzzy min-max neural network for speaker identification</title><author>Jawarkar, N. P. ; Holambe, R. S. ; Basu, T. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-fba758eeda7e071471f42387e8fc48e039bc5d955d06be3544aa8788270788af3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial neural networks</topic><topic>Cepstral analysis</topic><topic>classification</topic><topic>Feature extraction</topic><topic>fuzzy neural networks</topic><topic>Hidden Markov models</topic><topic>MFCC</topic><topic>speaker identification</topic><topic>Speaker recognition</topic><topic>Speech</topic><topic>Speech processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Jawarkar, N. P.</creatorcontrib><creatorcontrib>Holambe, R. S.</creatorcontrib><creatorcontrib>Basu, T. K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jawarkar, N. P.</au><au>Holambe, R. S.</au><au>Basu, T. K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Use of fuzzy min-max neural network for speaker identification</atitle><btitle>2011 International Conference on Recent Trends in Information Technology (ICRTIT)</btitle><stitle>ICRTIT</stitle><date>2011-06</date><risdate>2011</risdate><spage>178</spage><epage>182</epage><pages>178-182</pages><isbn>9781457705885</isbn><isbn>1457705885</isbn><eisbn>1457705893</eisbn><eisbn>1457705907</eisbn><eisbn>9781457705908</eisbn><eisbn>9781457705892</eisbn><abstract>This paper presents the use of fuzzy min-max neural network for the text independent speaker identification. The fuzzy min-max neural network utilizes fuzzy sets as pattern classes. It is a three layer feedforward network that grows adaptively to meet the demands of the problem. The database containing speech utterances recorded from fifty speakers in Marathi language is used for experimentation. Mel frequency cepstral coefficients that represent short time spectrum are used as features for identification. The results obtained with fuzzy min-max neural network are compared with Gaussian mixture model. It is observed that fuzzy neural network outperforms the Gaussian mixture model and attains the identification accuracy of 99.99% with 15 second speech utterance.</abstract><pub>IEEE</pub><doi>10.1109/ICRTIT.2011.5972455</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457705885
ispartof 2011 International Conference on Recent Trends in Information Technology (ICRTIT), 2011, p.178-182
issn
language eng
recordid cdi_ieee_primary_5972455
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Cepstral analysis
classification
Feature extraction
fuzzy neural networks
Hidden Markov models
MFCC
speaker identification
Speaker recognition
Speech
Speech processing
title Use of fuzzy min-max neural network for speaker identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Use%20of%20fuzzy%20min-max%20neural%20network%20for%20speaker%20identification&rft.btitle=2011%20International%20Conference%20on%20Recent%20Trends%20in%20Information%20Technology%20(ICRTIT)&rft.au=Jawarkar,%20N.%20P.&rft.date=2011-06&rft.spage=178&rft.epage=182&rft.pages=178-182&rft.isbn=9781457705885&rft.isbn_list=1457705885&rft_id=info:doi/10.1109/ICRTIT.2011.5972455&rft_dat=%3Cieee_6IE%3E5972455%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457705893&rft.eisbn_list=1457705907&rft.eisbn_list=9781457705908&rft.eisbn_list=9781457705892&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5972455&rfr_iscdi=true