Hydro-generator units operating condition forecasting and fault diagnosis based on BP neural network

In this paper, from the Angle to predict , take hydro generating operation condition parameters (head, power) as input sample, take vibration, shaft waggling and pulse pressure, bearings temperature and so on parameter as output sample, create neural network prediction model. Train the established m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xinfeng Ge, Luoping Pan, Zhongxin Gao, Shu Tang, Dongdong Chu
Format: Tagungsbericht
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1317
container_issue
container_start_page 1315
container_title
container_volume
creator Xinfeng Ge
Luoping Pan
Zhongxin Gao
Shu Tang
Dongdong Chu
description In this paper, from the Angle to predict , take hydro generating operation condition parameters (head, power) as input sample, take vibration, shaft waggling and pulse pressure, bearings temperature and so on parameter as output sample, create neural network prediction model. Train the established models, through comparing a different designs scheme, chose one smaller error model. Predict through the trained neural network modes ,and compare with the measurement values.
doi_str_mv 10.1109/CSSS.2011.5972027
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5972027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5972027</ieee_id><sourcerecordid>5972027</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-530c907284de8f0e3d5f2c775c951d113547560810ee34aa1bf26a78ad8934df3</originalsourceid><addsrcrecordid>eNo1UM1KAzEYjIig1j6AeMkL7JrfzeaoRa1QUNjey9fNlxKtSUl2kb69rda5DDMMAzOE3HJWc87s_azrulowzmttjWDCnJFrroRS1jTSnpOpNe2_FvySTEv5YAc0TWuluiJuvnc5VRuMmGFImY4xDIWm3VGGuKF9ii4MIUXqU8Yeyq8L0VEP43agLsAmphIKXUNBRw_Bx3caccywPdDwnfLnDbnwsC04PfGELJ-flrN5tXh7eZ09LKpg2VBpyXrLjGiVw9YzlE570Ruje6u541xqZXTDWs4QpQLgay8aMC244xTn5YTc_dUGRFztcviCvF-dfpE_OEdXsg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hydro-generator units operating condition forecasting and fault diagnosis based on BP neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xinfeng Ge ; Luoping Pan ; Zhongxin Gao ; Shu Tang ; Dongdong Chu</creator><creatorcontrib>Xinfeng Ge ; Luoping Pan ; Zhongxin Gao ; Shu Tang ; Dongdong Chu</creatorcontrib><description>In this paper, from the Angle to predict , take hydro generating operation condition parameters (head, power) as input sample, take vibration, shaft waggling and pulse pressure, bearings temperature and so on parameter as output sample, create neural network prediction model. Train the established models, through comparing a different designs scheme, chose one smaller error model. Predict through the trained neural network modes ,and compare with the measurement values.</description><identifier>ISBN: 9781424497621</identifier><identifier>ISBN: 1424497620</identifier><identifier>EISBN: 1424497639</identifier><identifier>EISBN: 9781424497638</identifier><identifier>EISBN: 9781424497614</identifier><identifier>EISBN: 1424497612</identifier><identifier>DOI: 10.1109/CSSS.2011.5972027</identifier><language>chi ; eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; condition forecasting ; Fault diagnosis ; Forecasting ; hydro-generating units ; Mathematical model ; neural network ; Presses ; Temperature measurement ; Vibrations</subject><ispartof>2011 International Conference on Computer Science and Service System (CSSS), 2011, p.1315-1317</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5972027$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5972027$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xinfeng Ge</creatorcontrib><creatorcontrib>Luoping Pan</creatorcontrib><creatorcontrib>Zhongxin Gao</creatorcontrib><creatorcontrib>Shu Tang</creatorcontrib><creatorcontrib>Dongdong Chu</creatorcontrib><title>Hydro-generator units operating condition forecasting and fault diagnosis based on BP neural network</title><title>2011 International Conference on Computer Science and Service System (CSSS)</title><addtitle>CSSS</addtitle><description>In this paper, from the Angle to predict , take hydro generating operation condition parameters (head, power) as input sample, take vibration, shaft waggling and pulse pressure, bearings temperature and so on parameter as output sample, create neural network prediction model. Train the established models, through comparing a different designs scheme, chose one smaller error model. Predict through the trained neural network modes ,and compare with the measurement values.</description><subject>Artificial neural networks</subject><subject>condition forecasting</subject><subject>Fault diagnosis</subject><subject>Forecasting</subject><subject>hydro-generating units</subject><subject>Mathematical model</subject><subject>neural network</subject><subject>Presses</subject><subject>Temperature measurement</subject><subject>Vibrations</subject><isbn>9781424497621</isbn><isbn>1424497620</isbn><isbn>1424497639</isbn><isbn>9781424497638</isbn><isbn>9781424497614</isbn><isbn>1424497612</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UM1KAzEYjIig1j6AeMkL7JrfzeaoRa1QUNjey9fNlxKtSUl2kb69rda5DDMMAzOE3HJWc87s_azrulowzmttjWDCnJFrroRS1jTSnpOpNe2_FvySTEv5YAc0TWuluiJuvnc5VRuMmGFImY4xDIWm3VGGuKF9ii4MIUXqU8Yeyq8L0VEP43agLsAmphIKXUNBRw_Bx3caccywPdDwnfLnDbnwsC04PfGELJ-flrN5tXh7eZ09LKpg2VBpyXrLjGiVw9YzlE570Ruje6u541xqZXTDWs4QpQLgay8aMC244xTn5YTc_dUGRFztcviCvF-dfpE_OEdXsg</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Xinfeng Ge</creator><creator>Luoping Pan</creator><creator>Zhongxin Gao</creator><creator>Shu Tang</creator><creator>Dongdong Chu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Hydro-generator units operating condition forecasting and fault diagnosis based on BP neural network</title><author>Xinfeng Ge ; Luoping Pan ; Zhongxin Gao ; Shu Tang ; Dongdong Chu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-530c907284de8f0e3d5f2c775c951d113547560810ee34aa1bf26a78ad8934df3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>chi ; eng</language><creationdate>2011</creationdate><topic>Artificial neural networks</topic><topic>condition forecasting</topic><topic>Fault diagnosis</topic><topic>Forecasting</topic><topic>hydro-generating units</topic><topic>Mathematical model</topic><topic>neural network</topic><topic>Presses</topic><topic>Temperature measurement</topic><topic>Vibrations</topic><toplevel>online_resources</toplevel><creatorcontrib>Xinfeng Ge</creatorcontrib><creatorcontrib>Luoping Pan</creatorcontrib><creatorcontrib>Zhongxin Gao</creatorcontrib><creatorcontrib>Shu Tang</creatorcontrib><creatorcontrib>Dongdong Chu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xinfeng Ge</au><au>Luoping Pan</au><au>Zhongxin Gao</au><au>Shu Tang</au><au>Dongdong Chu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hydro-generator units operating condition forecasting and fault diagnosis based on BP neural network</atitle><btitle>2011 International Conference on Computer Science and Service System (CSSS)</btitle><stitle>CSSS</stitle><date>2011-06</date><risdate>2011</risdate><spage>1315</spage><epage>1317</epage><pages>1315-1317</pages><isbn>9781424497621</isbn><isbn>1424497620</isbn><eisbn>1424497639</eisbn><eisbn>9781424497638</eisbn><eisbn>9781424497614</eisbn><eisbn>1424497612</eisbn><abstract>In this paper, from the Angle to predict , take hydro generating operation condition parameters (head, power) as input sample, take vibration, shaft waggling and pulse pressure, bearings temperature and so on parameter as output sample, create neural network prediction model. Train the established models, through comparing a different designs scheme, chose one smaller error model. Predict through the trained neural network modes ,and compare with the measurement values.</abstract><pub>IEEE</pub><doi>10.1109/CSSS.2011.5972027</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424497621
ispartof 2011 International Conference on Computer Science and Service System (CSSS), 2011, p.1315-1317
issn
language chi ; eng
recordid cdi_ieee_primary_5972027
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
condition forecasting
Fault diagnosis
Forecasting
hydro-generating units
Mathematical model
neural network
Presses
Temperature measurement
Vibrations
title Hydro-generator units operating condition forecasting and fault diagnosis based on BP neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hydro-generator%20units%20operating%20condition%20forecasting%20and%20fault%20diagnosis%20based%20on%20BP%20neural%20network&rft.btitle=2011%20International%20Conference%20on%20Computer%20Science%20and%20Service%20System%20(CSSS)&rft.au=Xinfeng%20Ge&rft.date=2011-06&rft.spage=1315&rft.epage=1317&rft.pages=1315-1317&rft.isbn=9781424497621&rft.isbn_list=1424497620&rft_id=info:doi/10.1109/CSSS.2011.5972027&rft_dat=%3Cieee_6IE%3E5972027%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424497639&rft.eisbn_list=9781424497638&rft.eisbn_list=9781424497614&rft.eisbn_list=1424497612&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5972027&rfr_iscdi=true