Knowledge modeling for classical control theory based on neural network

The design is mainly directed against neural network has a strong nonlinear mapping ability to be effective in the expression of expertise and know-how to the establishment of empirical knowledge of experts from the input space to the output of the nonlinear mapping space. Classic control theory, su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jun Yi, Taifu Li, Jike Ge, Yingying Su, Wenjin Hu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 161
container_issue
container_start_page 158
container_title
container_volume
creator Jun Yi
Taifu Li
Jike Ge
Yingying Su
Wenjin Hu
description The design is mainly directed against neural network has a strong nonlinear mapping ability to be effective in the expression of expertise and know-how to the establishment of empirical knowledge of experts from the input space to the output of the nonlinear mapping space. Classic control theory, such as root locus method and frequency response methods, are also called by experience and knowledge of experts. Therefore, this issue is envisaged that the use of the function of neural networks to solve classical correction control system to solve the problem of controller parameters.
doi_str_mv 10.1109/WCICA.2011.5970719
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5970719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5970719</ieee_id><sourcerecordid>5970719</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ac67d2e806586aebfb913f7370e2afeba04bc51d72cc02eff2c81c725a0152da3</originalsourceid><addsrcrecordid>eNpFj89KAzEYxCMiqLUvoJe8wNZ82c2_oyzaigUvit5KNvlSV7eJJCulb--CBecyDD8YZgi5BrYAYOb2rX1s7xacASyEUUyBOSGXIIHrRhqjT_-Dfj8n81I-2SQpjWr0BVk-xbQf0G-R7pLHoY9bGlKmbrCl9M4O1KU45jTQ8QNTPtDOFvQ0RRrxJ0844rhP-euKnAU7FJwffUZeH-5f2lW1fl5O-9ZVD0qMlXVSeY6aSaGlxS50BuqgasWQ24CdZU3nBHjFnWMcQ-BOg1NcWAaCe1vPyM1fb4-Im-_c72w-bI7H61-C804a</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Knowledge modeling for classical control theory based on neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jun Yi ; Taifu Li ; Jike Ge ; Yingying Su ; Wenjin Hu</creator><creatorcontrib>Jun Yi ; Taifu Li ; Jike Ge ; Yingying Su ; Wenjin Hu</creatorcontrib><description>The design is mainly directed against neural network has a strong nonlinear mapping ability to be effective in the expression of expertise and know-how to the establishment of empirical knowledge of experts from the input space to the output of the nonlinear mapping space. Classic control theory, such as root locus method and frequency response methods, are also called by experience and knowledge of experts. Therefore, this issue is envisaged that the use of the function of neural networks to solve classical correction control system to solve the problem of controller parameters.</description><identifier>ISBN: 161284698X</identifier><identifier>ISBN: 9781612846989</identifier><identifier>EISBN: 1612846998</identifier><identifier>EISBN: 1612847005</identifier><identifier>EISBN: 9781612847009</identifier><identifier>EISBN: 9781612846996</identifier><identifier>DOI: 10.1109/WCICA.2011.5970719</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Classical control theory ; Computational modeling ; Control systems ; Control theory ; controller parameters ; Knowledge engineering ; Knowledge model ; Mathematical model ; Neural networks ; Training</subject><ispartof>2011 9th World Congress on Intelligent Control and Automation, 2011, p.158-161</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5970719$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5970719$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jun Yi</creatorcontrib><creatorcontrib>Taifu Li</creatorcontrib><creatorcontrib>Jike Ge</creatorcontrib><creatorcontrib>Yingying Su</creatorcontrib><creatorcontrib>Wenjin Hu</creatorcontrib><title>Knowledge modeling for classical control theory based on neural network</title><title>2011 9th World Congress on Intelligent Control and Automation</title><addtitle>WCICA</addtitle><description>The design is mainly directed against neural network has a strong nonlinear mapping ability to be effective in the expression of expertise and know-how to the establishment of empirical knowledge of experts from the input space to the output of the nonlinear mapping space. Classic control theory, such as root locus method and frequency response methods, are also called by experience and knowledge of experts. Therefore, this issue is envisaged that the use of the function of neural networks to solve classical correction control system to solve the problem of controller parameters.</description><subject>Artificial neural networks</subject><subject>Classical control theory</subject><subject>Computational modeling</subject><subject>Control systems</subject><subject>Control theory</subject><subject>controller parameters</subject><subject>Knowledge engineering</subject><subject>Knowledge model</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>Training</subject><isbn>161284698X</isbn><isbn>9781612846989</isbn><isbn>1612846998</isbn><isbn>1612847005</isbn><isbn>9781612847009</isbn><isbn>9781612846996</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj89KAzEYxCMiqLUvoJe8wNZ82c2_oyzaigUvit5KNvlSV7eJJCulb--CBecyDD8YZgi5BrYAYOb2rX1s7xacASyEUUyBOSGXIIHrRhqjT_-Dfj8n81I-2SQpjWr0BVk-xbQf0G-R7pLHoY9bGlKmbrCl9M4O1KU45jTQ8QNTPtDOFvQ0RRrxJ0844rhP-euKnAU7FJwffUZeH-5f2lW1fl5O-9ZVD0qMlXVSeY6aSaGlxS50BuqgasWQ24CdZU3nBHjFnWMcQ-BOg1NcWAaCe1vPyM1fb4-Im-_c72w-bI7H61-C804a</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Jun Yi</creator><creator>Taifu Li</creator><creator>Jike Ge</creator><creator>Yingying Su</creator><creator>Wenjin Hu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Knowledge modeling for classical control theory based on neural network</title><author>Jun Yi ; Taifu Li ; Jike Ge ; Yingying Su ; Wenjin Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ac67d2e806586aebfb913f7370e2afeba04bc51d72cc02eff2c81c725a0152da3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial neural networks</topic><topic>Classical control theory</topic><topic>Computational modeling</topic><topic>Control systems</topic><topic>Control theory</topic><topic>controller parameters</topic><topic>Knowledge engineering</topic><topic>Knowledge model</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Jun Yi</creatorcontrib><creatorcontrib>Taifu Li</creatorcontrib><creatorcontrib>Jike Ge</creatorcontrib><creatorcontrib>Yingying Su</creatorcontrib><creatorcontrib>Wenjin Hu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jun Yi</au><au>Taifu Li</au><au>Jike Ge</au><au>Yingying Su</au><au>Wenjin Hu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Knowledge modeling for classical control theory based on neural network</atitle><btitle>2011 9th World Congress on Intelligent Control and Automation</btitle><stitle>WCICA</stitle><date>2011-06</date><risdate>2011</risdate><spage>158</spage><epage>161</epage><pages>158-161</pages><isbn>161284698X</isbn><isbn>9781612846989</isbn><eisbn>1612846998</eisbn><eisbn>1612847005</eisbn><eisbn>9781612847009</eisbn><eisbn>9781612846996</eisbn><abstract>The design is mainly directed against neural network has a strong nonlinear mapping ability to be effective in the expression of expertise and know-how to the establishment of empirical knowledge of experts from the input space to the output of the nonlinear mapping space. Classic control theory, such as root locus method and frequency response methods, are also called by experience and knowledge of experts. Therefore, this issue is envisaged that the use of the function of neural networks to solve classical correction control system to solve the problem of controller parameters.</abstract><pub>IEEE</pub><doi>10.1109/WCICA.2011.5970719</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 161284698X
ispartof 2011 9th World Congress on Intelligent Control and Automation, 2011, p.158-161
issn
language eng
recordid cdi_ieee_primary_5970719
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Classical control theory
Computational modeling
Control systems
Control theory
controller parameters
Knowledge engineering
Knowledge model
Mathematical model
Neural networks
Training
title Knowledge modeling for classical control theory based on neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Knowledge%20modeling%20for%20classical%20control%20theory%20based%20on%20neural%20network&rft.btitle=2011%209th%20World%20Congress%20on%20Intelligent%20Control%20and%20Automation&rft.au=Jun%20Yi&rft.date=2011-06&rft.spage=158&rft.epage=161&rft.pages=158-161&rft.isbn=161284698X&rft.isbn_list=9781612846989&rft_id=info:doi/10.1109/WCICA.2011.5970719&rft_dat=%3Cieee_6IE%3E5970719%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612846998&rft.eisbn_list=1612847005&rft.eisbn_list=9781612847009&rft.eisbn_list=9781612846996&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5970719&rfr_iscdi=true