Random delayed Kalman fusion based on equivalent conversion for the multisensor system

Aiming at the linear time invariant or the parameters preliminary given for the multisensor target tracking system, this paper develops a random delayed Kalman filter fusion estimator based on equivalent conversion for multisensor system. This algorithm effectively uses the characteristics of Kalman...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chenlin Wen, Tingliang Xu, Quanbo Ge
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3760
container_issue
container_start_page 3755
container_title
container_volume
creator Chenlin Wen
Tingliang Xu
Quanbo Ge
description Aiming at the linear time invariant or the parameters preliminary given for the multisensor target tracking system, this paper develops a random delayed Kalman filter fusion estimator based on equivalent conversion for multisensor system. This algorithm effectively uses the characteristics of Kalman filter statistical parameters which can be calculated out of line, and the calculated form of measurements weighted summation under Linear Minimum Mean Square Error (LMMSE) estimate. Firstly, it transformed the multisensor system into the single sensor order form based on the idea of remolding. Secondly, it utilizes the method of one step prediction estimate and measurements prediction residual compensation to get the optimal weighting coefficient though calculating out of line and adjusting online. Then, it can realize the optimal update of the random delay measurements. At last, Algorithm analysis and computer simulation indicates that this algorithm is validity and advantage.
doi_str_mv 10.1109/CCDC.2011.5968877
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5968877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5968877</ieee_id><sourcerecordid>5968877</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cd2f256e00f7c388eadcfd1b0b83e68795fa2ab49605b29aec300500ea97550e3</originalsourceid><addsrcrecordid>eNpVkEtLxEAQhMcXuKz7A8TL_IGsPe-Zo8QnLgiiXpdO0oORPDSTXdh_b9BFsC7VVR_0oRg7F7AUAsJlnl_nSwlCLE2w3jt3wBbBeaGl1t4pqw7ZTATts6C1O_rHHBz_MRVO2SKlD5hkbQAZZuztGbuqb3lFDe6o4o_YtNjxuEl13_EC09RNB31t6i021I287LstDT849gMf34m3m2asE3VpymmXRmrP2EnEJtFi73P2envzkt9nq6e7h_xqldXCmTErKxmlsQQQXam8J6zKWIkCCq_IehdMRImFDhZMIQNSqQAMAGFwxgCpObv4_VsT0fpzqFscduv9SuoboadYEA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Random delayed Kalman fusion based on equivalent conversion for the multisensor system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chenlin Wen ; Tingliang Xu ; Quanbo Ge</creator><creatorcontrib>Chenlin Wen ; Tingliang Xu ; Quanbo Ge</creatorcontrib><description>Aiming at the linear time invariant or the parameters preliminary given for the multisensor target tracking system, this paper develops a random delayed Kalman filter fusion estimator based on equivalent conversion for multisensor system. This algorithm effectively uses the characteristics of Kalman filter statistical parameters which can be calculated out of line, and the calculated form of measurements weighted summation under Linear Minimum Mean Square Error (LMMSE) estimate. Firstly, it transformed the multisensor system into the single sensor order form based on the idea of remolding. Secondly, it utilizes the method of one step prediction estimate and measurements prediction residual compensation to get the optimal weighting coefficient though calculating out of line and adjusting online. Then, it can realize the optimal update of the random delay measurements. At last, Algorithm analysis and computer simulation indicates that this algorithm is validity and advantage.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 9781424487370</identifier><identifier>ISBN: 1424487374</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 9781424487363</identifier><identifier>EISBN: 1424487382</identifier><identifier>EISBN: 9781424487387</identifier><identifier>EISBN: 1424487366</identifier><identifier>DOI: 10.1109/CCDC.2011.5968877</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Delay ; Kalman filter ; Kalman filters ; measurements summation ; multisensor system ; Multisensor systems ; Prediction algorithms ; prediction and compensation ; random delay ; Weight measurement</subject><ispartof>2011 Chinese Control and Decision Conference (CCDC), 2011, p.3755-3760</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5968877$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5968877$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chenlin Wen</creatorcontrib><creatorcontrib>Tingliang Xu</creatorcontrib><creatorcontrib>Quanbo Ge</creatorcontrib><title>Random delayed Kalman fusion based on equivalent conversion for the multisensor system</title><title>2011 Chinese Control and Decision Conference (CCDC)</title><addtitle>CCDC</addtitle><description>Aiming at the linear time invariant or the parameters preliminary given for the multisensor target tracking system, this paper develops a random delayed Kalman filter fusion estimator based on equivalent conversion for multisensor system. This algorithm effectively uses the characteristics of Kalman filter statistical parameters which can be calculated out of line, and the calculated form of measurements weighted summation under Linear Minimum Mean Square Error (LMMSE) estimate. Firstly, it transformed the multisensor system into the single sensor order form based on the idea of remolding. Secondly, it utilizes the method of one step prediction estimate and measurements prediction residual compensation to get the optimal weighting coefficient though calculating out of line and adjusting online. Then, it can realize the optimal update of the random delay measurements. At last, Algorithm analysis and computer simulation indicates that this algorithm is validity and advantage.</description><subject>Algorithm design and analysis</subject><subject>Delay</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>measurements summation</subject><subject>multisensor system</subject><subject>Multisensor systems</subject><subject>Prediction algorithms</subject><subject>prediction and compensation</subject><subject>random delay</subject><subject>Weight measurement</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>9781424487370</isbn><isbn>1424487374</isbn><isbn>9781424487363</isbn><isbn>1424487382</isbn><isbn>9781424487387</isbn><isbn>1424487366</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEtLxEAQhMcXuKz7A8TL_IGsPe-Zo8QnLgiiXpdO0oORPDSTXdh_b9BFsC7VVR_0oRg7F7AUAsJlnl_nSwlCLE2w3jt3wBbBeaGl1t4pqw7ZTATts6C1O_rHHBz_MRVO2SKlD5hkbQAZZuztGbuqb3lFDe6o4o_YtNjxuEl13_EC09RNB31t6i021I287LstDT849gMf34m3m2asE3VpymmXRmrP2EnEJtFi73P2envzkt9nq6e7h_xqldXCmTErKxmlsQQQXam8J6zKWIkCCq_IehdMRImFDhZMIQNSqQAMAGFwxgCpObv4_VsT0fpzqFscduv9SuoboadYEA</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Chenlin Wen</creator><creator>Tingliang Xu</creator><creator>Quanbo Ge</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201105</creationdate><title>Random delayed Kalman fusion based on equivalent conversion for the multisensor system</title><author>Chenlin Wen ; Tingliang Xu ; Quanbo Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cd2f256e00f7c388eadcfd1b0b83e68795fa2ab49605b29aec300500ea97550e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Delay</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>measurements summation</topic><topic>multisensor system</topic><topic>Multisensor systems</topic><topic>Prediction algorithms</topic><topic>prediction and compensation</topic><topic>random delay</topic><topic>Weight measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Chenlin Wen</creatorcontrib><creatorcontrib>Tingliang Xu</creatorcontrib><creatorcontrib>Quanbo Ge</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chenlin Wen</au><au>Tingliang Xu</au><au>Quanbo Ge</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Random delayed Kalman fusion based on equivalent conversion for the multisensor system</atitle><btitle>2011 Chinese Control and Decision Conference (CCDC)</btitle><stitle>CCDC</stitle><date>2011-05</date><risdate>2011</risdate><spage>3755</spage><epage>3760</epage><pages>3755-3760</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>9781424487370</isbn><isbn>1424487374</isbn><eisbn>9781424487363</eisbn><eisbn>1424487382</eisbn><eisbn>9781424487387</eisbn><eisbn>1424487366</eisbn><abstract>Aiming at the linear time invariant or the parameters preliminary given for the multisensor target tracking system, this paper develops a random delayed Kalman filter fusion estimator based on equivalent conversion for multisensor system. This algorithm effectively uses the characteristics of Kalman filter statistical parameters which can be calculated out of line, and the calculated form of measurements weighted summation under Linear Minimum Mean Square Error (LMMSE) estimate. Firstly, it transformed the multisensor system into the single sensor order form based on the idea of remolding. Secondly, it utilizes the method of one step prediction estimate and measurements prediction residual compensation to get the optimal weighting coefficient though calculating out of line and adjusting online. Then, it can realize the optimal update of the random delay measurements. At last, Algorithm analysis and computer simulation indicates that this algorithm is validity and advantage.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2011.5968877</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-9439
ispartof 2011 Chinese Control and Decision Conference (CCDC), 2011, p.3755-3760
issn 1948-9439
1948-9447
language eng
recordid cdi_ieee_primary_5968877
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Delay
Kalman filter
Kalman filters
measurements summation
multisensor system
Multisensor systems
Prediction algorithms
prediction and compensation
random delay
Weight measurement
title Random delayed Kalman fusion based on equivalent conversion for the multisensor system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Random%20delayed%20Kalman%20fusion%20based%20on%20equivalent%20conversion%20for%20the%20multisensor%20system&rft.btitle=2011%20Chinese%20Control%20and%20Decision%20Conference%20(CCDC)&rft.au=Chenlin%20Wen&rft.date=2011-05&rft.spage=3755&rft.epage=3760&rft.pages=3755-3760&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=9781424487370&rft.isbn_list=1424487374&rft_id=info:doi/10.1109/CCDC.2011.5968877&rft_dat=%3Cieee_6IE%3E5968877%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424487363&rft.eisbn_list=1424487382&rft.eisbn_list=9781424487387&rft.eisbn_list=1424487366&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5968877&rfr_iscdi=true