A research about a MIMO system identification algorithm based on ANN using slide mode variable structure

Applying sliding mode variable structure control to train neural networks is proposed in this paper, which can not only increases learning rate but also improves the stability of neural-network. Furthermore, this method helps to promote the generalization capacity of neural-network. In order to impr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yahui Wang, Peixin Cheng, Zhifeng Xia
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3253
container_issue
container_start_page 3248
container_title
container_volume
creator Yahui Wang
Peixin Cheng
Zhifeng Xia
description Applying sliding mode variable structure control to train neural networks is proposed in this paper, which can not only increases learning rate but also improves the stability of neural-network. Furthermore, this method helps to promote the generalization capacity of neural-network. In order to improve the generalization ability, two sliding mode objective functions are designed based on previous researches for a new neural-network learning algorithm. Simulation analysis shows that the proposed algorithm increases the generalization ability and robustness of neural-network, meanwhile, enhances the identification accuracy.
doi_str_mv 10.1109/CCDC.2011.5968817
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5968817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5968817</ieee_id><sourcerecordid>5968817</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e0f3704318e529bd554045eeae7c2337a09d4cb0a9c11d648d348cc4636d25e3</originalsourceid><addsrcrecordid>eNpVUMlqwzAUVDdoSPMBpRf9gFPJ2o_B3QJZLrkHWXpOVOy4SHIhf19DQ6FzmAczw_AYhB4pmVNKzHNVvVTzklA6F0ZqTdUVmhmlKS8514pJdo0m1HBdGM7VzT9Pkds_j5l7NEvpk4yQ0pDSTNBxgSMksNEdsa37IWOL18v1FqdzytDh4OGUQxOczaE_Ydse-hjyscO1TeDxKC02GzykcDrg1I5p3PUjfdsYbN0CTjkOLg8RHtBdY9sEs8udot3b6676KFbb92W1WBWBKpELIM34M2dUgyhN7YXghAsAC8qVjClLjOeuJtY4Sr3k2jOuneOSSV8KYFP09FsbAGD_FUNn43l_mY39AFG5XG4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A research about a MIMO system identification algorithm based on ANN using slide mode variable structure</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yahui Wang ; Peixin Cheng ; Zhifeng Xia</creator><creatorcontrib>Yahui Wang ; Peixin Cheng ; Zhifeng Xia</creatorcontrib><description>Applying sliding mode variable structure control to train neural networks is proposed in this paper, which can not only increases learning rate but also improves the stability of neural-network. Furthermore, this method helps to promote the generalization capacity of neural-network. In order to improve the generalization ability, two sliding mode objective functions are designed based on previous researches for a new neural-network learning algorithm. Simulation analysis shows that the proposed algorithm increases the generalization ability and robustness of neural-network, meanwhile, enhances the identification accuracy.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 9781424487370</identifier><identifier>ISBN: 1424487374</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 9781424487363</identifier><identifier>EISBN: 1424487382</identifier><identifier>EISBN: 9781424487387</identifier><identifier>EISBN: 1424487366</identifier><identifier>DOI: 10.1109/CCDC.2011.5968817</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Artificial neural networks ; Generalization Ability ; Least squares approximation ; MIMO System Identification ; Neural-Network ; Robustness ; Sliding mode control ; Sliding Mode Variable Structure ; Training ; Training data</subject><ispartof>2011 Chinese Control and Decision Conference (CCDC), 2011, p.3248-3253</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5968817$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5968817$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yahui Wang</creatorcontrib><creatorcontrib>Peixin Cheng</creatorcontrib><creatorcontrib>Zhifeng Xia</creatorcontrib><title>A research about a MIMO system identification algorithm based on ANN using slide mode variable structure</title><title>2011 Chinese Control and Decision Conference (CCDC)</title><addtitle>CCDC</addtitle><description>Applying sliding mode variable structure control to train neural networks is proposed in this paper, which can not only increases learning rate but also improves the stability of neural-network. Furthermore, this method helps to promote the generalization capacity of neural-network. In order to improve the generalization ability, two sliding mode objective functions are designed based on previous researches for a new neural-network learning algorithm. Simulation analysis shows that the proposed algorithm increases the generalization ability and robustness of neural-network, meanwhile, enhances the identification accuracy.</description><subject>Algorithm design and analysis</subject><subject>Artificial neural networks</subject><subject>Generalization Ability</subject><subject>Least squares approximation</subject><subject>MIMO System Identification</subject><subject>Neural-Network</subject><subject>Robustness</subject><subject>Sliding mode control</subject><subject>Sliding Mode Variable Structure</subject><subject>Training</subject><subject>Training data</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>9781424487370</isbn><isbn>1424487374</isbn><isbn>9781424487363</isbn><isbn>1424487382</isbn><isbn>9781424487387</isbn><isbn>1424487366</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMlqwzAUVDdoSPMBpRf9gFPJ2o_B3QJZLrkHWXpOVOy4SHIhf19DQ6FzmAczw_AYhB4pmVNKzHNVvVTzklA6F0ZqTdUVmhmlKS8514pJdo0m1HBdGM7VzT9Pkds_j5l7NEvpk4yQ0pDSTNBxgSMksNEdsa37IWOL18v1FqdzytDh4OGUQxOczaE_Ydse-hjyscO1TeDxKC02GzykcDrg1I5p3PUjfdsYbN0CTjkOLg8RHtBdY9sEs8udot3b6676KFbb92W1WBWBKpELIM34M2dUgyhN7YXghAsAC8qVjClLjOeuJtY4Sr3k2jOuneOSSV8KYFP09FsbAGD_FUNn43l_mY39AFG5XG4</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Yahui Wang</creator><creator>Peixin Cheng</creator><creator>Zhifeng Xia</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201105</creationdate><title>A research about a MIMO system identification algorithm based on ANN using slide mode variable structure</title><author>Yahui Wang ; Peixin Cheng ; Zhifeng Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e0f3704318e529bd554045eeae7c2337a09d4cb0a9c11d648d348cc4636d25e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Artificial neural networks</topic><topic>Generalization Ability</topic><topic>Least squares approximation</topic><topic>MIMO System Identification</topic><topic>Neural-Network</topic><topic>Robustness</topic><topic>Sliding mode control</topic><topic>Sliding Mode Variable Structure</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Yahui Wang</creatorcontrib><creatorcontrib>Peixin Cheng</creatorcontrib><creatorcontrib>Zhifeng Xia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yahui Wang</au><au>Peixin Cheng</au><au>Zhifeng Xia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A research about a MIMO system identification algorithm based on ANN using slide mode variable structure</atitle><btitle>2011 Chinese Control and Decision Conference (CCDC)</btitle><stitle>CCDC</stitle><date>2011-05</date><risdate>2011</risdate><spage>3248</spage><epage>3253</epage><pages>3248-3253</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>9781424487370</isbn><isbn>1424487374</isbn><eisbn>9781424487363</eisbn><eisbn>1424487382</eisbn><eisbn>9781424487387</eisbn><eisbn>1424487366</eisbn><abstract>Applying sliding mode variable structure control to train neural networks is proposed in this paper, which can not only increases learning rate but also improves the stability of neural-network. Furthermore, this method helps to promote the generalization capacity of neural-network. In order to improve the generalization ability, two sliding mode objective functions are designed based on previous researches for a new neural-network learning algorithm. Simulation analysis shows that the proposed algorithm increases the generalization ability and robustness of neural-network, meanwhile, enhances the identification accuracy.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2011.5968817</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-9439
ispartof 2011 Chinese Control and Decision Conference (CCDC), 2011, p.3248-3253
issn 1948-9439
1948-9447
language eng
recordid cdi_ieee_primary_5968817
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Artificial neural networks
Generalization Ability
Least squares approximation
MIMO System Identification
Neural-Network
Robustness
Sliding mode control
Sliding Mode Variable Structure
Training
Training data
title A research about a MIMO system identification algorithm based on ANN using slide mode variable structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20research%20about%20a%20MIMO%20system%20identification%20algorithm%20based%20on%20ANN%20using%20slide%20mode%20variable%20structure&rft.btitle=2011%20Chinese%20Control%20and%20Decision%20Conference%20(CCDC)&rft.au=Yahui%20Wang&rft.date=2011-05&rft.spage=3248&rft.epage=3253&rft.pages=3248-3253&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=9781424487370&rft.isbn_list=1424487374&rft_id=info:doi/10.1109/CCDC.2011.5968817&rft_dat=%3Cieee_6IE%3E5968817%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424487363&rft.eisbn_list=1424487382&rft.eisbn_list=9781424487387&rft.eisbn_list=1424487366&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5968817&rfr_iscdi=true