Using eigenanalysis to classify proteins and protein motifs

Eigenanalyis is a common name for linear algebra based multivariate analysis procedures like Principal Components Analysis (PCA), Correspondence Analysis (CA), Factor Analysis (FA), etc. The common idea in those methods is to compute eigenvalues and corresponding eigenvectors of a real symmetric mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Jericevic, Z.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue
container_start_page 266
container_title
container_volume
creator Jericevic, Z.
description Eigenanalyis is a common name for linear algebra based multivariate analysis procedures like Principal Components Analysis (PCA), Correspondence Analysis (CA), Factor Analysis (FA), etc. The common idea in those methods is to compute eigenvalues and corresponding eigenvectors of a real symmetric matrix. The orthogonality of eigenvectors insures that the information contained in one vector is excluded from all other vectors and provides the basis for ordaining and filtering the information from original data set. We applied this methodology and freely accessible sequence information in open access biological data bases to classify proteins and their motifs in variety of situations like families of functionally related proteins, classifying functionally unknown proteins and/or finding new member of a known protein family. The performance of proposed methodology is illustrated on the analysis of nuclear receptor proteins family.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5967062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5967062</ieee_id><sourcerecordid>5967062</sourcerecordid><originalsourceid>FETCH-ieee_primary_59670623</originalsourceid><addsrcrecordid>eNp9iUsKwjAUACMiKNoTuMkFhNg0n4dLUTyArkvQ1_IkTUteN729Irp1NsMwM1GA82B0qbUyYOaf3lfGOQVg_VIUzE_1xiqvoVqJw40ptRKpxRRSiBMTy7GX9xiYqZnkkPsRKbEM6fEL2fUjNbwRiyZExuLrtdieT9fjZUeIWA-ZupCn2oB1ypb6_30BWIA1ug</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using eigenanalysis to classify proteins and protein motifs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jericevic, Z.</creator><creatorcontrib>Jericevic, Z.</creatorcontrib><description>Eigenanalyis is a common name for linear algebra based multivariate analysis procedures like Principal Components Analysis (PCA), Correspondence Analysis (CA), Factor Analysis (FA), etc. The common idea in those methods is to compute eigenvalues and corresponding eigenvectors of a real symmetric matrix. The orthogonality of eigenvectors insures that the information contained in one vector is excluded from all other vectors and provides the basis for ordaining and filtering the information from original data set. We applied this methodology and freely accessible sequence information in open access biological data bases to classify proteins and their motifs in variety of situations like families of functionally related proteins, classifying functionally unknown proteins and/or finding new member of a known protein family. The performance of proposed methodology is illustrated on the analysis of nuclear receptor proteins family.</description><identifier>ISBN: 9781457709968</identifier><identifier>ISBN: 1457709961</identifier><identifier>EISBN: 9789532330595</identifier><identifier>EISBN: 9789532330670</identifier><identifier>EISBN: 9532330674</identifier><identifier>EISBN: 9532330593</identifier><language>eng</language><publisher>IEEE</publisher><subject>Amino acids ; Filtering ; Histograms ; Noise ; Proteins ; Three dimensional displays</subject><ispartof>2011 Proceedings of the 34th International Convention MIPRO, 2011, p.266-268</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5967062$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5967062$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jericevic, Z.</creatorcontrib><title>Using eigenanalysis to classify proteins and protein motifs</title><title>2011 Proceedings of the 34th International Convention MIPRO</title><addtitle>MIPRO</addtitle><description>Eigenanalyis is a common name for linear algebra based multivariate analysis procedures like Principal Components Analysis (PCA), Correspondence Analysis (CA), Factor Analysis (FA), etc. The common idea in those methods is to compute eigenvalues and corresponding eigenvectors of a real symmetric matrix. The orthogonality of eigenvectors insures that the information contained in one vector is excluded from all other vectors and provides the basis for ordaining and filtering the information from original data set. We applied this methodology and freely accessible sequence information in open access biological data bases to classify proteins and their motifs in variety of situations like families of functionally related proteins, classifying functionally unknown proteins and/or finding new member of a known protein family. The performance of proposed methodology is illustrated on the analysis of nuclear receptor proteins family.</description><subject>Amino acids</subject><subject>Filtering</subject><subject>Histograms</subject><subject>Noise</subject><subject>Proteins</subject><subject>Three dimensional displays</subject><isbn>9781457709968</isbn><isbn>1457709961</isbn><isbn>9789532330595</isbn><isbn>9789532330670</isbn><isbn>9532330674</isbn><isbn>9532330593</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9iUsKwjAUACMiKNoTuMkFhNg0n4dLUTyArkvQ1_IkTUteN729Irp1NsMwM1GA82B0qbUyYOaf3lfGOQVg_VIUzE_1xiqvoVqJw40ptRKpxRRSiBMTy7GX9xiYqZnkkPsRKbEM6fEL2fUjNbwRiyZExuLrtdieT9fjZUeIWA-ZupCn2oB1ypb6_30BWIA1ug</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Jericevic, Z.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201105</creationdate><title>Using eigenanalysis to classify proteins and protein motifs</title><author>Jericevic, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_59670623</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino acids</topic><topic>Filtering</topic><topic>Histograms</topic><topic>Noise</topic><topic>Proteins</topic><topic>Three dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Jericevic, Z.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jericevic, Z.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using eigenanalysis to classify proteins and protein motifs</atitle><btitle>2011 Proceedings of the 34th International Convention MIPRO</btitle><stitle>MIPRO</stitle><date>2011-05</date><risdate>2011</risdate><spage>266</spage><epage>268</epage><pages>266-268</pages><isbn>9781457709968</isbn><isbn>1457709961</isbn><eisbn>9789532330595</eisbn><eisbn>9789532330670</eisbn><eisbn>9532330674</eisbn><eisbn>9532330593</eisbn><abstract>Eigenanalyis is a common name for linear algebra based multivariate analysis procedures like Principal Components Analysis (PCA), Correspondence Analysis (CA), Factor Analysis (FA), etc. The common idea in those methods is to compute eigenvalues and corresponding eigenvectors of a real symmetric matrix. The orthogonality of eigenvectors insures that the information contained in one vector is excluded from all other vectors and provides the basis for ordaining and filtering the information from original data set. We applied this methodology and freely accessible sequence information in open access biological data bases to classify proteins and their motifs in variety of situations like families of functionally related proteins, classifying functionally unknown proteins and/or finding new member of a known protein family. The performance of proposed methodology is illustrated on the analysis of nuclear receptor proteins family.</abstract><pub>IEEE</pub></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457709968
ispartof 2011 Proceedings of the 34th International Convention MIPRO, 2011, p.266-268
issn
language eng
recordid cdi_ieee_primary_5967062
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Amino acids
Filtering
Histograms
Noise
Proteins
Three dimensional displays
title Using eigenanalysis to classify proteins and protein motifs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20eigenanalysis%20to%20classify%20proteins%20and%20protein%20motifs&rft.btitle=2011%20Proceedings%20of%20the%2034th%20International%20Convention%20MIPRO&rft.au=Jericevic,%20Z.&rft.date=2011-05&rft.spage=266&rft.epage=268&rft.pages=266-268&rft.isbn=9781457709968&rft.isbn_list=1457709961&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E5967062%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9789532330595&rft.eisbn_list=9789532330670&rft.eisbn_list=9532330674&rft.eisbn_list=9532330593&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5967062&rfr_iscdi=true