Retrieval of corn field soil moisture from ENVISAT-ASAR AP data

An experiment was carried out over a flat agriculture area located at Gongzhuling, in the Jilin province of China. Four adjacent corn fields were selected as the test targets and the plant and soil parameters were collected over a growing season for the models inputs. Six multitemporal and multiangl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fang Wang, Jiang Liangmei
Format: Tagungsbericht
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4380
container_issue
container_start_page 4377
container_title
container_volume
creator Fang Wang
Jiang Liangmei
description An experiment was carried out over a flat agriculture area located at Gongzhuling, in the Jilin province of China. Four adjacent corn fields were selected as the test targets and the plant and soil parameters were collected over a growing season for the models inputs. Six multitemporal and multiangle ASAR AP images (C band, HH and HV) were acquired during the experiment. This paper presents a semi-experience model for retrieval of soil moisture from the corn field during the growing cycle using the measurement and radar data. Firstly, angular normalization of ASAR data using a coherent scattering model. Then, using the bare soil backscattering model AIEM and the ground measurements in one of the corn fields, the ratio of the modeled bare soil scattering contribution and the observed backscattering coefficient after angular normalization was expressed as the function of vegetation water content. Finally, the neural network approach was used to retrieve the soil moisture. The inversion results are validated by the in situ measurements of the other corn fields.
doi_str_mv 10.1109/RSETE.2011.5965301
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5965301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5965301</ieee_id><sourcerecordid>5965301</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-2984ecd01b6df7a85c20a1881d973bfdf8a59f5528f6344eea384afea209c7773</originalsourceid><addsrcrecordid>eNo1j8tKw0AYRkdEUGteQDfzAqlzv6wklKiFopIEt-Vv5h8YSYxMouDbK1i_zeFsDnyEXHO25pz526atu3otGOdr7Y2WjJ-QS66EUp5bJk9J4a37d-HOSTHPb-x3xnjj1QW5a3DJCb9goFOk_ZTfaUw4BDpPaaDjlOblMyONeRpp_fS6bauurNqqodULDbDAFTmLMMxYHLki3X3dbR7L3fPDdlPtyuTZUgrvFPaB8YMJ0YLTvWDAnePBW3mIITrQPmotXDRSKUSQTkFEEMz31lq5Ijd_2YSI-4-cRsjf--Nl-QOKCEiQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Retrieval of corn field soil moisture from ENVISAT-ASAR AP data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fang Wang ; Jiang Liangmei</creator><creatorcontrib>Fang Wang ; Jiang Liangmei</creatorcontrib><description>An experiment was carried out over a flat agriculture area located at Gongzhuling, in the Jilin province of China. Four adjacent corn fields were selected as the test targets and the plant and soil parameters were collected over a growing season for the models inputs. Six multitemporal and multiangle ASAR AP images (C band, HH and HV) were acquired during the experiment. This paper presents a semi-experience model for retrieval of soil moisture from the corn field during the growing cycle using the measurement and radar data. Firstly, angular normalization of ASAR data using a coherent scattering model. Then, using the bare soil backscattering model AIEM and the ground measurements in one of the corn fields, the ratio of the modeled bare soil scattering contribution and the observed backscattering coefficient after angular normalization was expressed as the function of vegetation water content. Finally, the neural network approach was used to retrieve the soil moisture. The inversion results are validated by the in situ measurements of the other corn fields.</description><identifier>ISBN: 9781424491728</identifier><identifier>ISBN: 142449172X</identifier><identifier>EISBN: 1424491703</identifier><identifier>EISBN: 9781424491711</identifier><identifier>EISBN: 1424491711</identifier><identifier>EISBN: 9781424491704</identifier><identifier>DOI: 10.1109/RSETE.2011.5965301</identifier><language>chi ; eng</language><publisher>IEEE</publisher><subject>Angular normalization ; ASAR AP data ; Backscatter ; Corn fields ; Data models ; Microwave imaging ; Microwave theory and techniques ; Remote sensing ; Retrieval ; Soil moisture</subject><ispartof>2011 International Conference on Remote Sensing, Environment and Transportation Engineering, 2011, p.4377-4380</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5965301$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5965301$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fang Wang</creatorcontrib><creatorcontrib>Jiang Liangmei</creatorcontrib><title>Retrieval of corn field soil moisture from ENVISAT-ASAR AP data</title><title>2011 International Conference on Remote Sensing, Environment and Transportation Engineering</title><addtitle>RSETE</addtitle><description>An experiment was carried out over a flat agriculture area located at Gongzhuling, in the Jilin province of China. Four adjacent corn fields were selected as the test targets and the plant and soil parameters were collected over a growing season for the models inputs. Six multitemporal and multiangle ASAR AP images (C band, HH and HV) were acquired during the experiment. This paper presents a semi-experience model for retrieval of soil moisture from the corn field during the growing cycle using the measurement and radar data. Firstly, angular normalization of ASAR data using a coherent scattering model. Then, using the bare soil backscattering model AIEM and the ground measurements in one of the corn fields, the ratio of the modeled bare soil scattering contribution and the observed backscattering coefficient after angular normalization was expressed as the function of vegetation water content. Finally, the neural network approach was used to retrieve the soil moisture. The inversion results are validated by the in situ measurements of the other corn fields.</description><subject>Angular normalization</subject><subject>ASAR AP data</subject><subject>Backscatter</subject><subject>Corn fields</subject><subject>Data models</subject><subject>Microwave imaging</subject><subject>Microwave theory and techniques</subject><subject>Remote sensing</subject><subject>Retrieval</subject><subject>Soil moisture</subject><isbn>9781424491728</isbn><isbn>142449172X</isbn><isbn>1424491703</isbn><isbn>9781424491711</isbn><isbn>1424491711</isbn><isbn>9781424491704</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j8tKw0AYRkdEUGteQDfzAqlzv6wklKiFopIEt-Vv5h8YSYxMouDbK1i_zeFsDnyEXHO25pz526atu3otGOdr7Y2WjJ-QS66EUp5bJk9J4a37d-HOSTHPb-x3xnjj1QW5a3DJCb9goFOk_ZTfaUw4BDpPaaDjlOblMyONeRpp_fS6bauurNqqodULDbDAFTmLMMxYHLki3X3dbR7L3fPDdlPtyuTZUgrvFPaB8YMJ0YLTvWDAnePBW3mIITrQPmotXDRSKUSQTkFEEMz31lq5Ijd_2YSI-4-cRsjf--Nl-QOKCEiQ</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Fang Wang</creator><creator>Jiang Liangmei</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Retrieval of corn field soil moisture from ENVISAT-ASAR AP data</title><author>Fang Wang ; Jiang Liangmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-2984ecd01b6df7a85c20a1881d973bfdf8a59f5528f6344eea384afea209c7773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>chi ; eng</language><creationdate>2011</creationdate><topic>Angular normalization</topic><topic>ASAR AP data</topic><topic>Backscatter</topic><topic>Corn fields</topic><topic>Data models</topic><topic>Microwave imaging</topic><topic>Microwave theory and techniques</topic><topic>Remote sensing</topic><topic>Retrieval</topic><topic>Soil moisture</topic><toplevel>online_resources</toplevel><creatorcontrib>Fang Wang</creatorcontrib><creatorcontrib>Jiang Liangmei</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fang Wang</au><au>Jiang Liangmei</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Retrieval of corn field soil moisture from ENVISAT-ASAR AP data</atitle><btitle>2011 International Conference on Remote Sensing, Environment and Transportation Engineering</btitle><stitle>RSETE</stitle><date>2011-06</date><risdate>2011</risdate><spage>4377</spage><epage>4380</epage><pages>4377-4380</pages><isbn>9781424491728</isbn><isbn>142449172X</isbn><eisbn>1424491703</eisbn><eisbn>9781424491711</eisbn><eisbn>1424491711</eisbn><eisbn>9781424491704</eisbn><abstract>An experiment was carried out over a flat agriculture area located at Gongzhuling, in the Jilin province of China. Four adjacent corn fields were selected as the test targets and the plant and soil parameters were collected over a growing season for the models inputs. Six multitemporal and multiangle ASAR AP images (C band, HH and HV) were acquired during the experiment. This paper presents a semi-experience model for retrieval of soil moisture from the corn field during the growing cycle using the measurement and radar data. Firstly, angular normalization of ASAR data using a coherent scattering model. Then, using the bare soil backscattering model AIEM and the ground measurements in one of the corn fields, the ratio of the modeled bare soil scattering contribution and the observed backscattering coefficient after angular normalization was expressed as the function of vegetation water content. Finally, the neural network approach was used to retrieve the soil moisture. The inversion results are validated by the in situ measurements of the other corn fields.</abstract><pub>IEEE</pub><doi>10.1109/RSETE.2011.5965301</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424491728
ispartof 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, 2011, p.4377-4380
issn
language chi ; eng
recordid cdi_ieee_primary_5965301
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Angular normalization
ASAR AP data
Backscatter
Corn fields
Data models
Microwave imaging
Microwave theory and techniques
Remote sensing
Retrieval
Soil moisture
title Retrieval of corn field soil moisture from ENVISAT-ASAR AP data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Retrieval%20of%20corn%20field%20soil%20moisture%20from%20ENVISAT-ASAR%20AP%20data&rft.btitle=2011%20International%20Conference%20on%20Remote%20Sensing,%20Environment%20and%20Transportation%20Engineering&rft.au=Fang%20Wang&rft.date=2011-06&rft.spage=4377&rft.epage=4380&rft.pages=4377-4380&rft.isbn=9781424491728&rft.isbn_list=142449172X&rft_id=info:doi/10.1109/RSETE.2011.5965301&rft_dat=%3Cieee_6IE%3E5965301%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424491703&rft.eisbn_list=9781424491711&rft.eisbn_list=1424491711&rft.eisbn_list=9781424491704&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5965301&rfr_iscdi=true