Evolution Framework for Resource Allocation with Local Interaction: An Infection Approach

This paper presents an evolution framework of resource allocation by infection among secondary users (SUs) in an OFDMA-based cognitive radio cellular networks. Each primary user (PU) sells his extra sub-channels to SUs in his sensing range to achieve the highest payoff and each SU may come across an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Anjin Guo, Peng Cheng, Xinbing Wang, Yun Rui, Xiaoying Gan, Hui Yu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Anjin Guo
Peng Cheng
Xinbing Wang
Yun Rui
Xiaoying Gan
Hui Yu
description This paper presents an evolution framework of resource allocation by infection among secondary users (SUs) in an OFDMA-based cognitive radio cellular networks. Each primary user (PU) sells his extra sub-channels to SUs in his sensing range to achieve the highest payoff and each SU may come across another in his sensing range to make infection. Two different infection processes among SUs, the infection with and without local knowledge respectively, are considered. We prove the existence and convergence of evolutionary equilibrium (EE) for both cases, and show some interesting properties such as the impact of cheating of SUs in the above infection processes. Besides, we proposed two algorithms for the infection processes to converge to EE in a distributed manner. Simulation results show that the algorithms with local knowledge can equally share the extra resources among SUs efficiently, which is actually the overall optimal solution (OOS). While for the algorithm without local knowledge, we find that though EE exists, OOS cannot always be achieved. Furthermore, we optimize the second algorithm to make EE approximate to OOS.
doi_str_mv 10.1109/icc.2011.5962716
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5962716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5962716</ieee_id><sourcerecordid>5962716</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bec3e41b0bc2e4646fe2aafe6f3988f5a7ff8287dac7c7e669ecbb7d358f4363</originalsourceid><addsrcrecordid>eNo1kE1PAjEYhOtXIiB3Ey_9A4t92-2Xtw0BJdnExHDQE-mWt2F1oaS7SPj3IuJp8sxM5jCE3AMbATD7WHs_4gxgJK3iGtQF6YMCbnIuxPsl6YEVJgNjxBUZWm3-My6vj5mULBOK6VvSb9tPxiS3AnrkY_Idm11Xxw2dJrfGfUxfNMRE37CNu-SRFk0TvTs19nW3ouWRGjrbdJic_7WfaLE5csAT0WK7TdH51R25Ca5pcXjWAZlPJ_PxS1a-Ps_GRZnVoGWXVegF5lCxynPMVa4CcucCqiCsMUE6HYLhRi-d116jUhZ9VemlkCbkQokBefibrRFxsU312qXD4vyQ-AHS7FfS</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evolution Framework for Resource Allocation with Local Interaction: An Infection Approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Anjin Guo ; Peng Cheng ; Xinbing Wang ; Yun Rui ; Xiaoying Gan ; Hui Yu</creator><creatorcontrib>Anjin Guo ; Peng Cheng ; Xinbing Wang ; Yun Rui ; Xiaoying Gan ; Hui Yu</creatorcontrib><description>This paper presents an evolution framework of resource allocation by infection among secondary users (SUs) in an OFDMA-based cognitive radio cellular networks. Each primary user (PU) sells his extra sub-channels to SUs in his sensing range to achieve the highest payoff and each SU may come across another in his sensing range to make infection. Two different infection processes among SUs, the infection with and without local knowledge respectively, are considered. We prove the existence and convergence of evolutionary equilibrium (EE) for both cases, and show some interesting properties such as the impact of cheating of SUs in the above infection processes. Besides, we proposed two algorithms for the infection processes to converge to EE in a distributed manner. Simulation results show that the algorithms with local knowledge can equally share the extra resources among SUs efficiently, which is actually the overall optimal solution (OOS). While for the algorithm without local knowledge, we find that though EE exists, OOS cannot always be achieved. Furthermore, we optimize the second algorithm to make EE approximate to OOS.</description><identifier>ISSN: 1550-3607</identifier><identifier>ISBN: 9781612842325</identifier><identifier>ISBN: 1612842321</identifier><identifier>EISSN: 1938-1883</identifier><identifier>EISBN: 161284233X</identifier><identifier>EISBN: 9781612842318</identifier><identifier>EISBN: 9781612842332</identifier><identifier>EISBN: 1612842313</identifier><identifier>DOI: 10.1109/icc.2011.5962716</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Bandwidth ; Cognitive radio ; Convergence ; Entropy ; Resource management ; Sensors</subject><ispartof>2011 IEEE International Conference on Communications (ICC), 2011, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5962716$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5962716$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Anjin Guo</creatorcontrib><creatorcontrib>Peng Cheng</creatorcontrib><creatorcontrib>Xinbing Wang</creatorcontrib><creatorcontrib>Yun Rui</creatorcontrib><creatorcontrib>Xiaoying Gan</creatorcontrib><creatorcontrib>Hui Yu</creatorcontrib><title>Evolution Framework for Resource Allocation with Local Interaction: An Infection Approach</title><title>2011 IEEE International Conference on Communications (ICC)</title><addtitle>icc</addtitle><description>This paper presents an evolution framework of resource allocation by infection among secondary users (SUs) in an OFDMA-based cognitive radio cellular networks. Each primary user (PU) sells his extra sub-channels to SUs in his sensing range to achieve the highest payoff and each SU may come across another in his sensing range to make infection. Two different infection processes among SUs, the infection with and without local knowledge respectively, are considered. We prove the existence and convergence of evolutionary equilibrium (EE) for both cases, and show some interesting properties such as the impact of cheating of SUs in the above infection processes. Besides, we proposed two algorithms for the infection processes to converge to EE in a distributed manner. Simulation results show that the algorithms with local knowledge can equally share the extra resources among SUs efficiently, which is actually the overall optimal solution (OOS). While for the algorithm without local knowledge, we find that though EE exists, OOS cannot always be achieved. Furthermore, we optimize the second algorithm to make EE approximate to OOS.</description><subject>Approximation algorithms</subject><subject>Bandwidth</subject><subject>Cognitive radio</subject><subject>Convergence</subject><subject>Entropy</subject><subject>Resource management</subject><subject>Sensors</subject><issn>1550-3607</issn><issn>1938-1883</issn><isbn>9781612842325</isbn><isbn>1612842321</isbn><isbn>161284233X</isbn><isbn>9781612842318</isbn><isbn>9781612842332</isbn><isbn>1612842313</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE1PAjEYhOtXIiB3Ey_9A4t92-2Xtw0BJdnExHDQE-mWt2F1oaS7SPj3IuJp8sxM5jCE3AMbATD7WHs_4gxgJK3iGtQF6YMCbnIuxPsl6YEVJgNjxBUZWm3-My6vj5mULBOK6VvSb9tPxiS3AnrkY_Idm11Xxw2dJrfGfUxfNMRE37CNu-SRFk0TvTs19nW3ouWRGjrbdJic_7WfaLE5csAT0WK7TdH51R25Ca5pcXjWAZlPJ_PxS1a-Ps_GRZnVoGWXVegF5lCxynPMVa4CcucCqiCsMUE6HYLhRi-d116jUhZ9VemlkCbkQokBefibrRFxsU312qXD4vyQ-AHS7FfS</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Anjin Guo</creator><creator>Peng Cheng</creator><creator>Xinbing Wang</creator><creator>Yun Rui</creator><creator>Xiaoying Gan</creator><creator>Hui Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201106</creationdate><title>Evolution Framework for Resource Allocation with Local Interaction: An Infection Approach</title><author>Anjin Guo ; Peng Cheng ; Xinbing Wang ; Yun Rui ; Xiaoying Gan ; Hui Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bec3e41b0bc2e4646fe2aafe6f3988f5a7ff8287dac7c7e669ecbb7d358f4363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation algorithms</topic><topic>Bandwidth</topic><topic>Cognitive radio</topic><topic>Convergence</topic><topic>Entropy</topic><topic>Resource management</topic><topic>Sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Anjin Guo</creatorcontrib><creatorcontrib>Peng Cheng</creatorcontrib><creatorcontrib>Xinbing Wang</creatorcontrib><creatorcontrib>Yun Rui</creatorcontrib><creatorcontrib>Xiaoying Gan</creatorcontrib><creatorcontrib>Hui Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Anjin Guo</au><au>Peng Cheng</au><au>Xinbing Wang</au><au>Yun Rui</au><au>Xiaoying Gan</au><au>Hui Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evolution Framework for Resource Allocation with Local Interaction: An Infection Approach</atitle><btitle>2011 IEEE International Conference on Communications (ICC)</btitle><stitle>icc</stitle><date>2011-06</date><risdate>2011</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1550-3607</issn><eissn>1938-1883</eissn><isbn>9781612842325</isbn><isbn>1612842321</isbn><eisbn>161284233X</eisbn><eisbn>9781612842318</eisbn><eisbn>9781612842332</eisbn><eisbn>1612842313</eisbn><abstract>This paper presents an evolution framework of resource allocation by infection among secondary users (SUs) in an OFDMA-based cognitive radio cellular networks. Each primary user (PU) sells his extra sub-channels to SUs in his sensing range to achieve the highest payoff and each SU may come across another in his sensing range to make infection. Two different infection processes among SUs, the infection with and without local knowledge respectively, are considered. We prove the existence and convergence of evolutionary equilibrium (EE) for both cases, and show some interesting properties such as the impact of cheating of SUs in the above infection processes. Besides, we proposed two algorithms for the infection processes to converge to EE in a distributed manner. Simulation results show that the algorithms with local knowledge can equally share the extra resources among SUs efficiently, which is actually the overall optimal solution (OOS). While for the algorithm without local knowledge, we find that though EE exists, OOS cannot always be achieved. Furthermore, we optimize the second algorithm to make EE approximate to OOS.</abstract><pub>IEEE</pub><doi>10.1109/icc.2011.5962716</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-3607
ispartof 2011 IEEE International Conference on Communications (ICC), 2011, p.1-5
issn 1550-3607
1938-1883
language eng
recordid cdi_ieee_primary_5962716
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Bandwidth
Cognitive radio
Convergence
Entropy
Resource management
Sensors
title Evolution Framework for Resource Allocation with Local Interaction: An Infection Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evolution%20Framework%20for%20Resource%20Allocation%20with%20Local%20Interaction:%20An%20Infection%20Approach&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Communications%20(ICC)&rft.au=Anjin%20Guo&rft.date=2011-06&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1550-3607&rft.eissn=1938-1883&rft.isbn=9781612842325&rft.isbn_list=1612842321&rft_id=info:doi/10.1109/icc.2011.5962716&rft_dat=%3Cieee_6IE%3E5962716%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=161284233X&rft.eisbn_list=9781612842318&rft.eisbn_list=9781612842332&rft.eisbn_list=1612842313&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5962716&rfr_iscdi=true