A non-volatile microcontroller with integrated floating-gate transistors

We present a non-volatile processor architecture where its entire state can be almost instantly stored and restored in a non-volatile fashion. This capability is attractive for embedded or mobile devices in highly energy constrained environments. The non-volatile microprocessor can enable long compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wing-kei Yu, Rajwade, S., Sung-En Wang, Lian, B., Suh, G. E., Kan, E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a non-volatile processor architecture where its entire state can be almost instantly stored and restored in a non-volatile fashion. This capability is attractive for embedded or mobile devices in highly energy constrained environments. The non-volatile microprocessor can enable long computations to continue across power interruptions on self-powered devices or save idle power consumption without sacrificing responsiveness. To realize this vision, a microprocessor must be able to copy state between volatile and non-volatile storage with minimal latency and energy consumption. Our non-volatile architecture addresses this challenge through a per-cell integration of floating-gate non-volatile transistors into volatile state elements and careful system-level optimizations to hide expensive non-volatile operations. We evaluate this approach with a transistor-level prototype of an 8-bit nonvolatile microcontroller. Experiments indicate that the proposed architecture has minimal impact on normal operation while enabling all processor state to be preserved across an unexpected power interruption.
ISSN:2325-6648
DOI:10.1109/DSNW.2011.5958839