A novel computational approach to solve nonlinear boundary value problems using extended modal series method

In this paper, a new approach is proposed to solve nonlinear boundary value problems (BVPs). In this approach, the original nonlinear BVP transforms into a sequence of linear BVPs. Solving the proposed linear BVP sequence in a recursive manner leads to the exact solution of original problem in the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jajarmi, A., Ramezanpour, H., Pariz, N., Kamyad, A. V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title
container_volume
creator Jajarmi, A.
Ramezanpour, H.
Pariz, N.
Kamyad, A. V.
description In this paper, a new approach is proposed to solve nonlinear boundary value problems (BVPs). In this approach, the original nonlinear BVP transforms into a sequence of linear BVPs. Solving the proposed linear BVP sequence in a recursive manner leads to the exact solution of original problem in the form of uniformly convergent series. Hence, to obtain the exact solution, only the techniques of solving linear ordinary differential equations are employed. This confirms that the proposed method is straightforward and easy to implement. Besides, we present an efficient algorithm with low computational complexity and fast convergence rate. Through the finite iterations of the algorithm, an approximate closed-form solution is obtained for the nonlinear BVP. Finally, a numerical example is employed to demonstrate efficiency, simplicity, and high accuracy of the proposed method.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5955740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5955740</ieee_id><sourcerecordid>5955740</sourcerecordid><originalsourceid>FETCH-ieee_primary_59557403</originalsourceid><addsrcrecordid>eNp9jDtuAjEURY0AKfxWQPM2gORh_GFKhBJlAfTI4JdgZPuNbM8Ido-L1LnNKe7RmbBlp4RQrdgfxJQtGyG15rrlasYW-0aJneZSfLBNzg9ep1TXHPSC-SNEGtHDjUI_FFMcRePB9H0ic7tDIcjkR6xW9C6iSXClIVqTXjAaPyBU8eoxZBiyi7-Az4LRooVAtoYyJocZApY72TWb_xifcfPHFdt-fZ5P3zuHiJc-uVCzF9lJqQVv_3_fTxRI1g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A novel computational approach to solve nonlinear boundary value problems using extended modal series method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jajarmi, A. ; Ramezanpour, H. ; Pariz, N. ; Kamyad, A. V.</creator><creatorcontrib>Jajarmi, A. ; Ramezanpour, H. ; Pariz, N. ; Kamyad, A. V.</creatorcontrib><description>In this paper, a new approach is proposed to solve nonlinear boundary value problems (BVPs). In this approach, the original nonlinear BVP transforms into a sequence of linear BVPs. Solving the proposed linear BVP sequence in a recursive manner leads to the exact solution of original problem in the form of uniformly convergent series. Hence, to obtain the exact solution, only the techniques of solving linear ordinary differential equations are employed. This confirms that the proposed method is straightforward and easy to implement. Besides, we present an efficient algorithm with low computational complexity and fast convergence rate. Through the finite iterations of the algorithm, an approximate closed-form solution is obtained for the nonlinear BVP. Finally, a numerical example is employed to demonstrate efficiency, simplicity, and high accuracy of the proposed method.</description><identifier>ISSN: 2164-7054</identifier><identifier>ISBN: 1457707306</identifier><identifier>ISBN: 9781457707308</identifier><identifier>EISBN: 9644634284</identifier><identifier>EISBN: 9789644634284</identifier><language>eng</language><publisher>IEEE</publisher><subject>approximate closed-form solution ; extended Modal series method ; nonlinear boundary value problem</subject><ispartof>2011 19th Iranian Conference on Electrical Engineering, 2011, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5955740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5955740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jajarmi, A.</creatorcontrib><creatorcontrib>Ramezanpour, H.</creatorcontrib><creatorcontrib>Pariz, N.</creatorcontrib><creatorcontrib>Kamyad, A. V.</creatorcontrib><title>A novel computational approach to solve nonlinear boundary value problems using extended modal series method</title><title>2011 19th Iranian Conference on Electrical Engineering</title><addtitle>IranianCEE</addtitle><description>In this paper, a new approach is proposed to solve nonlinear boundary value problems (BVPs). In this approach, the original nonlinear BVP transforms into a sequence of linear BVPs. Solving the proposed linear BVP sequence in a recursive manner leads to the exact solution of original problem in the form of uniformly convergent series. Hence, to obtain the exact solution, only the techniques of solving linear ordinary differential equations are employed. This confirms that the proposed method is straightforward and easy to implement. Besides, we present an efficient algorithm with low computational complexity and fast convergence rate. Through the finite iterations of the algorithm, an approximate closed-form solution is obtained for the nonlinear BVP. Finally, a numerical example is employed to demonstrate efficiency, simplicity, and high accuracy of the proposed method.</description><subject>approximate closed-form solution</subject><subject>extended Modal series method</subject><subject>nonlinear boundary value problem</subject><issn>2164-7054</issn><isbn>1457707306</isbn><isbn>9781457707308</isbn><isbn>9644634284</isbn><isbn>9789644634284</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jDtuAjEURY0AKfxWQPM2gORh_GFKhBJlAfTI4JdgZPuNbM8Ido-L1LnNKe7RmbBlp4RQrdgfxJQtGyG15rrlasYW-0aJneZSfLBNzg9ep1TXHPSC-SNEGtHDjUI_FFMcRePB9H0ic7tDIcjkR6xW9C6iSXClIVqTXjAaPyBU8eoxZBiyi7-Az4LRooVAtoYyJocZApY72TWb_xifcfPHFdt-fZ5P3zuHiJc-uVCzF9lJqQVv_3_fTxRI1g</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Jajarmi, A.</creator><creator>Ramezanpour, H.</creator><creator>Pariz, N.</creator><creator>Kamyad, A. V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201105</creationdate><title>A novel computational approach to solve nonlinear boundary value problems using extended modal series method</title><author>Jajarmi, A. ; Ramezanpour, H. ; Pariz, N. ; Kamyad, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_59557403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>approximate closed-form solution</topic><topic>extended Modal series method</topic><topic>nonlinear boundary value problem</topic><toplevel>online_resources</toplevel><creatorcontrib>Jajarmi, A.</creatorcontrib><creatorcontrib>Ramezanpour, H.</creatorcontrib><creatorcontrib>Pariz, N.</creatorcontrib><creatorcontrib>Kamyad, A. V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jajarmi, A.</au><au>Ramezanpour, H.</au><au>Pariz, N.</au><au>Kamyad, A. V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel computational approach to solve nonlinear boundary value problems using extended modal series method</atitle><btitle>2011 19th Iranian Conference on Electrical Engineering</btitle><stitle>IranianCEE</stitle><date>2011-05</date><risdate>2011</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2164-7054</issn><isbn>1457707306</isbn><isbn>9781457707308</isbn><eisbn>9644634284</eisbn><eisbn>9789644634284</eisbn><abstract>In this paper, a new approach is proposed to solve nonlinear boundary value problems (BVPs). In this approach, the original nonlinear BVP transforms into a sequence of linear BVPs. Solving the proposed linear BVP sequence in a recursive manner leads to the exact solution of original problem in the form of uniformly convergent series. Hence, to obtain the exact solution, only the techniques of solving linear ordinary differential equations are employed. This confirms that the proposed method is straightforward and easy to implement. Besides, we present an efficient algorithm with low computational complexity and fast convergence rate. Through the finite iterations of the algorithm, an approximate closed-form solution is obtained for the nonlinear BVP. Finally, a numerical example is employed to demonstrate efficiency, simplicity, and high accuracy of the proposed method.</abstract><pub>IEEE</pub></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-7054
ispartof 2011 19th Iranian Conference on Electrical Engineering, 2011, p.1-1
issn 2164-7054
language eng
recordid cdi_ieee_primary_5955740
source IEEE Electronic Library (IEL) Conference Proceedings
subjects approximate closed-form solution
extended Modal series method
nonlinear boundary value problem
title A novel computational approach to solve nonlinear boundary value problems using extended modal series method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A21%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20computational%20approach%20to%20solve%20nonlinear%20boundary%20value%20problems%20using%20extended%20modal%20series%20method&rft.btitle=2011%2019th%20Iranian%20Conference%20on%20Electrical%20Engineering&rft.au=Jajarmi,%20A.&rft.date=2011-05&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2164-7054&rft.isbn=1457707306&rft.isbn_list=9781457707308&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E5955740%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9644634284&rft.eisbn_list=9789644634284&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5955740&rfr_iscdi=true