Mass detection in mammograms using ga based PCA and Haralick features selection

Many existing researches utilized different types of feature extraction techniques to detect masses in ROI images. Based on our observations, inclusion of additional features beyond a certain point worsens the performance rather than enhancing it. This paper describes a hybrid method of mammogram re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Amroabadi, SayedMasoud Hashemi, Ahmadzadeh, Mohammad Reza, Hekmatnia, Ali
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Amroabadi, SayedMasoud Hashemi
Ahmadzadeh, Mohammad Reza
Hekmatnia, Ali
description Many existing researches utilized different types of feature extraction techniques to detect masses in ROI images. Based on our observations, inclusion of additional features beyond a certain point worsens the performance rather than enhancing it. This paper describes a hybrid method of mammogram recognition which is based on principle component analysis, Haralick features and Genetic algorithm to select the best features.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5955601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5955601</ieee_id><sourcerecordid>5955601</sourcerecordid><originalsourceid>FETCH-ieee_primary_59556013</originalsourceid><addsrcrecordid>eNp9jLsKwkAQAE9U8JUvsNkfCFzMPUwpQUkjWtjLajbhNBflNin8ewWtnWaKgRmIWWaUMqlardVQzBKlrZU2lWYkpqvEqNhKrSYiYr7JD8ZkydpOxWGPzFBSR9fOPVpwLXj0_lEH9Aw9u7aGGuGCTCUc8w1gW0KBARt3vUNF2PWBGJia72AhxhU2TNHPc7HcbU95ETsiOj-D8xheZ51pbWSS_q9vNqc8ag</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Mass detection in mammograms using ga based PCA and Haralick features selection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Amroabadi, SayedMasoud Hashemi ; Ahmadzadeh, Mohammad Reza ; Hekmatnia, Ali</creator><creatorcontrib>Amroabadi, SayedMasoud Hashemi ; Ahmadzadeh, Mohammad Reza ; Hekmatnia, Ali</creatorcontrib><description>Many existing researches utilized different types of feature extraction techniques to detect masses in ROI images. Based on our observations, inclusion of additional features beyond a certain point worsens the performance rather than enhancing it. This paper describes a hybrid method of mammogram recognition which is based on principle component analysis, Haralick features and Genetic algorithm to select the best features.</description><identifier>ISSN: 2164-7054</identifier><identifier>ISBN: 1457707306</identifier><identifier>ISBN: 9781457707308</identifier><identifier>EISBN: 9644634284</identifier><identifier>EISBN: 9789644634284</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Classification algorithms ; co-occurrence matrices ; component analysis ; Digital mammography ; Feature extraction ; Genetic algorithm ; Genetic algorithms ; Lesions ; Principal component analysis ; Support vector machine classification</subject><ispartof>2011 19th Iranian Conference on Electrical Engineering, 2011, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5955601$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5955601$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Amroabadi, SayedMasoud Hashemi</creatorcontrib><creatorcontrib>Ahmadzadeh, Mohammad Reza</creatorcontrib><creatorcontrib>Hekmatnia, Ali</creatorcontrib><title>Mass detection in mammograms using ga based PCA and Haralick features selection</title><title>2011 19th Iranian Conference on Electrical Engineering</title><addtitle>IranianCEE</addtitle><description>Many existing researches utilized different types of feature extraction techniques to detect masses in ROI images. Based on our observations, inclusion of additional features beyond a certain point worsens the performance rather than enhancing it. This paper describes a hybrid method of mammogram recognition which is based on principle component analysis, Haralick features and Genetic algorithm to select the best features.</description><subject>Algorithm design and analysis</subject><subject>Classification algorithms</subject><subject>co-occurrence matrices</subject><subject>component analysis</subject><subject>Digital mammography</subject><subject>Feature extraction</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Lesions</subject><subject>Principal component analysis</subject><subject>Support vector machine classification</subject><issn>2164-7054</issn><isbn>1457707306</isbn><isbn>9781457707308</isbn><isbn>9644634284</isbn><isbn>9789644634284</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jLsKwkAQAE9U8JUvsNkfCFzMPUwpQUkjWtjLajbhNBflNin8ewWtnWaKgRmIWWaUMqlardVQzBKlrZU2lWYkpqvEqNhKrSYiYr7JD8ZkydpOxWGPzFBSR9fOPVpwLXj0_lEH9Aw9u7aGGuGCTCUc8w1gW0KBARt3vUNF2PWBGJia72AhxhU2TNHPc7HcbU95ETsiOj-D8xheZ51pbWSS_q9vNqc8ag</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Amroabadi, SayedMasoud Hashemi</creator><creator>Ahmadzadeh, Mohammad Reza</creator><creator>Hekmatnia, Ali</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201105</creationdate><title>Mass detection in mammograms using ga based PCA and Haralick features selection</title><author>Amroabadi, SayedMasoud Hashemi ; Ahmadzadeh, Mohammad Reza ; Hekmatnia, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_59556013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Classification algorithms</topic><topic>co-occurrence matrices</topic><topic>component analysis</topic><topic>Digital mammography</topic><topic>Feature extraction</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Lesions</topic><topic>Principal component analysis</topic><topic>Support vector machine classification</topic><toplevel>online_resources</toplevel><creatorcontrib>Amroabadi, SayedMasoud Hashemi</creatorcontrib><creatorcontrib>Ahmadzadeh, Mohammad Reza</creatorcontrib><creatorcontrib>Hekmatnia, Ali</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amroabadi, SayedMasoud Hashemi</au><au>Ahmadzadeh, Mohammad Reza</au><au>Hekmatnia, Ali</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Mass detection in mammograms using ga based PCA and Haralick features selection</atitle><btitle>2011 19th Iranian Conference on Electrical Engineering</btitle><stitle>IranianCEE</stitle><date>2011-05</date><risdate>2011</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2164-7054</issn><isbn>1457707306</isbn><isbn>9781457707308</isbn><eisbn>9644634284</eisbn><eisbn>9789644634284</eisbn><abstract>Many existing researches utilized different types of feature extraction techniques to detect masses in ROI images. Based on our observations, inclusion of additional features beyond a certain point worsens the performance rather than enhancing it. This paper describes a hybrid method of mammogram recognition which is based on principle component analysis, Haralick features and Genetic algorithm to select the best features.</abstract><pub>IEEE</pub></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-7054
ispartof 2011 19th Iranian Conference on Electrical Engineering, 2011, p.1-4
issn 2164-7054
language eng
recordid cdi_ieee_primary_5955601
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Classification algorithms
co-occurrence matrices
component analysis
Digital mammography
Feature extraction
Genetic algorithm
Genetic algorithms
Lesions
Principal component analysis
Support vector machine classification
title Mass detection in mammograms using ga based PCA and Haralick features selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Mass%20detection%20in%20mammograms%20using%20ga%20based%20PCA%20and%20Haralick%20features%20selection&rft.btitle=2011%2019th%20Iranian%20Conference%20on%20Electrical%20Engineering&rft.au=Amroabadi,%20SayedMasoud%20Hashemi&rft.date=2011-05&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2164-7054&rft.isbn=1457707306&rft.isbn_list=9781457707308&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E5955601%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9644634284&rft.eisbn_list=9789644634284&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5955601&rfr_iscdi=true