A Non-cooperative Game for 3D Object Recognition in Cluttered Scenes

During the last few years a wide range of algorithms and devices have been made available to easily acquire range images. To this extent, the increasing abundance of depth data boosts the need for reliable and unsupervised analysis techniques, spanning from part registration to automated segmentatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Albarelli, A., Rodolà, E., Bergamasco, F., Torsello, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 259
container_issue
container_start_page 252
container_title
container_volume
creator Albarelli, A.
Rodolà, E.
Bergamasco, F.
Torsello, A.
description During the last few years a wide range of algorithms and devices have been made available to easily acquire range images. To this extent, the increasing abundance of depth data boosts the need for reliable and unsupervised analysis techniques, spanning from part registration to automated segmentation. In this context, we focus on the recognition of known objects in cluttered and incomplete 3D scans. Fitting a model to a scene is a very important task in many scenarios such as industrial inspection, scene understanding and even gaming. For this reason, this problem has been extensively tackled in literature. Nevertheless, while many descriptor-based approaches have been proposed, a number of hurdles still hinder the use of global techniques. In this paper we try to offer a different perspective on the topic. Specifically, we adopt an evolutionary selection algorithm in order to extend the scope of local descriptors to satisfy global pair wise constraints. In addition, the very same technique is also used to shift from an initial sparse correspondence to a dense matching. This leads to a novel pipeline for 3D object recognition, which is validated with an extensive set of experiments and comparisons with recent well-known feature-based approaches.
doi_str_mv 10.1109/3DIMPVT.2011.39
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5955368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5955368</ieee_id><sourcerecordid>5955368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1779-6963f06c5f6fce73f4ce8dc43ed89d80a2db5dee0a2d99c65187c1a2e38eaf633</originalsourceid><addsrcrecordid>eNotzL1OwzAUQGEjQKIpzAwsfoEEO9e_Y5VAqVQogsJaufY1ctXGVRKQeHuEYDrfdAi55qzinNlbaBePz-_rqmacV2BPSMG0slKAsnBKCq54bYSorTgjEy4lKxU38oIUw7BjDLQRekLaGX3KXelzPmLvxvSFdO4OSGPuKbR0td2hH-kL-vzRpTHljqaONvvPccQeA3312OFwSc6j2w949d8pebu_WzcP5XI1XzSzZem51rZUVkFkysuookcNUXg0wQvAYGwwzNVhKwPiL6z1SnKjPXc1gkEXFcCU3Px9EyJujn06uP57I62UoAz8AAoZS-8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Non-cooperative Game for 3D Object Recognition in Cluttered Scenes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Albarelli, A. ; Rodolà, E. ; Bergamasco, F. ; Torsello, A.</creator><creatorcontrib>Albarelli, A. ; Rodolà, E. ; Bergamasco, F. ; Torsello, A.</creatorcontrib><description>During the last few years a wide range of algorithms and devices have been made available to easily acquire range images. To this extent, the increasing abundance of depth data boosts the need for reliable and unsupervised analysis techniques, spanning from part registration to automated segmentation. In this context, we focus on the recognition of known objects in cluttered and incomplete 3D scans. Fitting a model to a scene is a very important task in many scenarios such as industrial inspection, scene understanding and even gaming. For this reason, this problem has been extensively tackled in literature. Nevertheless, while many descriptor-based approaches have been proposed, a number of hurdles still hinder the use of global techniques. In this paper we try to offer a different perspective on the topic. Specifically, we adopt an evolutionary selection algorithm in order to extend the scope of local descriptors to satisfy global pair wise constraints. In addition, the very same technique is also used to shift from an initial sparse correspondence to a dense matching. This leads to a novel pipeline for 3D object recognition, which is validated with an extensive set of experiments and comparisons with recent well-known feature-based approaches.</description><identifier>ISSN: 1550-6185</identifier><identifier>ISBN: 1612844294</identifier><identifier>ISBN: 9781612844299</identifier><identifier>EISBN: 0769543693</identifier><identifier>EISBN: 9780769543697</identifier><identifier>DOI: 10.1109/3DIMPVT.2011.39</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Game Theory ; Games ; Object in Clutter ; Object recognition ; Pipelines ; Rigid Alignment ; Robustness ; Solid modeling ; Three dimensional displays</subject><ispartof>2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, 2011, p.252-259</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1779-6963f06c5f6fce73f4ce8dc43ed89d80a2db5dee0a2d99c65187c1a2e38eaf633</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5955368$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2062,27934,54929</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5955368$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Albarelli, A.</creatorcontrib><creatorcontrib>Rodolà, E.</creatorcontrib><creatorcontrib>Bergamasco, F.</creatorcontrib><creatorcontrib>Torsello, A.</creatorcontrib><title>A Non-cooperative Game for 3D Object Recognition in Cluttered Scenes</title><title>2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission</title><addtitle>3dimpvt</addtitle><description>During the last few years a wide range of algorithms and devices have been made available to easily acquire range images. To this extent, the increasing abundance of depth data boosts the need for reliable and unsupervised analysis techniques, spanning from part registration to automated segmentation. In this context, we focus on the recognition of known objects in cluttered and incomplete 3D scans. Fitting a model to a scene is a very important task in many scenarios such as industrial inspection, scene understanding and even gaming. For this reason, this problem has been extensively tackled in literature. Nevertheless, while many descriptor-based approaches have been proposed, a number of hurdles still hinder the use of global techniques. In this paper we try to offer a different perspective on the topic. Specifically, we adopt an evolutionary selection algorithm in order to extend the scope of local descriptors to satisfy global pair wise constraints. In addition, the very same technique is also used to shift from an initial sparse correspondence to a dense matching. This leads to a novel pipeline for 3D object recognition, which is validated with an extensive set of experiments and comparisons with recent well-known feature-based approaches.</description><subject>Computational modeling</subject><subject>Game Theory</subject><subject>Games</subject><subject>Object in Clutter</subject><subject>Object recognition</subject><subject>Pipelines</subject><subject>Rigid Alignment</subject><subject>Robustness</subject><subject>Solid modeling</subject><subject>Three dimensional displays</subject><issn>1550-6185</issn><isbn>1612844294</isbn><isbn>9781612844299</isbn><isbn>0769543693</isbn><isbn>9780769543697</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzL1OwzAUQGEjQKIpzAwsfoEEO9e_Y5VAqVQogsJaufY1ctXGVRKQeHuEYDrfdAi55qzinNlbaBePz-_rqmacV2BPSMG0slKAsnBKCq54bYSorTgjEy4lKxU38oIUw7BjDLQRekLaGX3KXelzPmLvxvSFdO4OSGPuKbR0td2hH-kL-vzRpTHljqaONvvPccQeA3312OFwSc6j2w949d8pebu_WzcP5XI1XzSzZem51rZUVkFkysuookcNUXg0wQvAYGwwzNVhKwPiL6z1SnKjPXc1gkEXFcCU3Px9EyJujn06uP57I62UoAz8AAoZS-8</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Albarelli, A.</creator><creator>Rodolà, E.</creator><creator>Bergamasco, F.</creator><creator>Torsello, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201105</creationdate><title>A Non-cooperative Game for 3D Object Recognition in Cluttered Scenes</title><author>Albarelli, A. ; Rodolà, E. ; Bergamasco, F. ; Torsello, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1779-6963f06c5f6fce73f4ce8dc43ed89d80a2db5dee0a2d99c65187c1a2e38eaf633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computational modeling</topic><topic>Game Theory</topic><topic>Games</topic><topic>Object in Clutter</topic><topic>Object recognition</topic><topic>Pipelines</topic><topic>Rigid Alignment</topic><topic>Robustness</topic><topic>Solid modeling</topic><topic>Three dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Albarelli, A.</creatorcontrib><creatorcontrib>Rodolà, E.</creatorcontrib><creatorcontrib>Bergamasco, F.</creatorcontrib><creatorcontrib>Torsello, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Albarelli, A.</au><au>Rodolà, E.</au><au>Bergamasco, F.</au><au>Torsello, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Non-cooperative Game for 3D Object Recognition in Cluttered Scenes</atitle><btitle>2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission</btitle><stitle>3dimpvt</stitle><date>2011-05</date><risdate>2011</risdate><spage>252</spage><epage>259</epage><pages>252-259</pages><issn>1550-6185</issn><isbn>1612844294</isbn><isbn>9781612844299</isbn><eisbn>0769543693</eisbn><eisbn>9780769543697</eisbn><abstract>During the last few years a wide range of algorithms and devices have been made available to easily acquire range images. To this extent, the increasing abundance of depth data boosts the need for reliable and unsupervised analysis techniques, spanning from part registration to automated segmentation. In this context, we focus on the recognition of known objects in cluttered and incomplete 3D scans. Fitting a model to a scene is a very important task in many scenarios such as industrial inspection, scene understanding and even gaming. For this reason, this problem has been extensively tackled in literature. Nevertheless, while many descriptor-based approaches have been proposed, a number of hurdles still hinder the use of global techniques. In this paper we try to offer a different perspective on the topic. Specifically, we adopt an evolutionary selection algorithm in order to extend the scope of local descriptors to satisfy global pair wise constraints. In addition, the very same technique is also used to shift from an initial sparse correspondence to a dense matching. This leads to a novel pipeline for 3D object recognition, which is validated with an extensive set of experiments and comparisons with recent well-known feature-based approaches.</abstract><pub>IEEE</pub><doi>10.1109/3DIMPVT.2011.39</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-6185
ispartof 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, 2011, p.252-259
issn 1550-6185
language eng
recordid cdi_ieee_primary_5955368
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
Game Theory
Games
Object in Clutter
Object recognition
Pipelines
Rigid Alignment
Robustness
Solid modeling
Three dimensional displays
title A Non-cooperative Game for 3D Object Recognition in Cluttered Scenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T04%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Non-cooperative%20Game%20for%203D%20Object%20Recognition%20in%20Cluttered%20Scenes&rft.btitle=2011%20International%20Conference%20on%203D%20Imaging,%20Modeling,%20Processing,%20Visualization%20and%20Transmission&rft.au=Albarelli,%20A.&rft.date=2011-05&rft.spage=252&rft.epage=259&rft.pages=252-259&rft.issn=1550-6185&rft.isbn=1612844294&rft.isbn_list=9781612844299&rft_id=info:doi/10.1109/3DIMPVT.2011.39&rft_dat=%3Cieee_6IE%3E5955368%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769543693&rft.eisbn_list=9780769543697&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5955368&rfr_iscdi=true