Feasible Interior Point Method for Absolute Value Equation

A feasible interior point method is proposed for solving the NP-hard absolute value equation (AVE) when the singular values of A exceed one. We formulate the NP-hard AVE as linear complementary problem, and prove that the solution to AVE is existent and unique under suitable assumptions. Then we pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Longquan Yong, Shemin Zhang, Fang'an Deng, Wentao Xiong
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 259
container_issue
container_start_page 256
container_title
container_volume
creator Longquan Yong
Shemin Zhang
Fang'an Deng
Wentao Xiong
description A feasible interior point method is proposed for solving the NP-hard absolute value equation (AVE) when the singular values of A exceed one. We formulate the NP-hard AVE as linear complementary problem, and prove that the solution to AVE is existent and unique under suitable assumptions. Then we present a feasible interior point algorithm for AVE based on the Newton direction and centering direction. We show that this algorithm has the polynomial complexity. Preliminary numerical results show that this method is promising.
doi_str_mv 10.1109/ICIC.2011.65
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5954554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5954554</ieee_id><sourcerecordid>5954554</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ee89be2e8b7813afecfbe43598ed834548e80067d36ecbf547007fefd0f9f6843</originalsourceid><addsrcrecordid>eNotjj1PwzAYhC1BJUrJxsbiP5Dgj9eOzVZFbYlU1A4Va2U3r4VRSCBxBv49QXDLSXen00PIPWcF58w-1lVdFYJxXmh1RTJbGq65MKCNYddkKbhmeQkgF-T2d2UFn4sbko3jO5ultRUAS_K0RTdG3yKtu4RD7Ad67GOX6Aumt76hYQ7WfuzbKSF9de2EdPM1uRT77o4sgmtHzP59RU7bzal6zveHXV2t93m0LOWIxnoUaPxMKF3AS_AIUlmDjZGgwKCZccpGarz4oKBkrAwYGhZs0Abkijz83UZEPH8O8cMN32dlFSgF8gdJpkkJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Feasible Interior Point Method for Absolute Value Equation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Longquan Yong ; Shemin Zhang ; Fang'an Deng ; Wentao Xiong</creator><creatorcontrib>Longquan Yong ; Shemin Zhang ; Fang'an Deng ; Wentao Xiong</creatorcontrib><description>A feasible interior point method is proposed for solving the NP-hard absolute value equation (AVE) when the singular values of A exceed one. We formulate the NP-hard AVE as linear complementary problem, and prove that the solution to AVE is existent and unique under suitable assumptions. Then we present a feasible interior point algorithm for AVE based on the Newton direction and centering direction. We show that this algorithm has the polynomial complexity. Preliminary numerical results show that this method is promising.</description><identifier>ISSN: 2160-7443</identifier><identifier>ISBN: 9781612846880</identifier><identifier>ISBN: 1612846882</identifier><identifier>DOI: 10.1109/ICIC.2011.65</identifier><identifier>LCCN: 2011921880</identifier><language>eng</language><publisher>IEEE</publisher><subject>absolute value equation ; Convergence ; Equations ; feasible interior point method ; linear complementary problem ; Linear programming ; Mathematical model ; Mathematical programming ; Programming</subject><ispartof>2011 Fourth International Conference on Information and Computing, 2011, p.256-259</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5954554$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5954554$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Longquan Yong</creatorcontrib><creatorcontrib>Shemin Zhang</creatorcontrib><creatorcontrib>Fang'an Deng</creatorcontrib><creatorcontrib>Wentao Xiong</creatorcontrib><title>Feasible Interior Point Method for Absolute Value Equation</title><title>2011 Fourth International Conference on Information and Computing</title><addtitle>ICIC</addtitle><description>A feasible interior point method is proposed for solving the NP-hard absolute value equation (AVE) when the singular values of A exceed one. We formulate the NP-hard AVE as linear complementary problem, and prove that the solution to AVE is existent and unique under suitable assumptions. Then we present a feasible interior point algorithm for AVE based on the Newton direction and centering direction. We show that this algorithm has the polynomial complexity. Preliminary numerical results show that this method is promising.</description><subject>absolute value equation</subject><subject>Convergence</subject><subject>Equations</subject><subject>feasible interior point method</subject><subject>linear complementary problem</subject><subject>Linear programming</subject><subject>Mathematical model</subject><subject>Mathematical programming</subject><subject>Programming</subject><issn>2160-7443</issn><isbn>9781612846880</isbn><isbn>1612846882</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjj1PwzAYhC1BJUrJxsbiP5Dgj9eOzVZFbYlU1A4Va2U3r4VRSCBxBv49QXDLSXen00PIPWcF58w-1lVdFYJxXmh1RTJbGq65MKCNYddkKbhmeQkgF-T2d2UFn4sbko3jO5ultRUAS_K0RTdG3yKtu4RD7Ad67GOX6Aumt76hYQ7WfuzbKSF9de2EdPM1uRT77o4sgmtHzP59RU7bzal6zveHXV2t93m0LOWIxnoUaPxMKF3AS_AIUlmDjZGgwKCZccpGarz4oKBkrAwYGhZs0Abkijz83UZEPH8O8cMN32dlFSgF8gdJpkkJ</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Longquan Yong</creator><creator>Shemin Zhang</creator><creator>Fang'an Deng</creator><creator>Wentao Xiong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201104</creationdate><title>Feasible Interior Point Method for Absolute Value Equation</title><author>Longquan Yong ; Shemin Zhang ; Fang'an Deng ; Wentao Xiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ee89be2e8b7813afecfbe43598ed834548e80067d36ecbf547007fefd0f9f6843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>absolute value equation</topic><topic>Convergence</topic><topic>Equations</topic><topic>feasible interior point method</topic><topic>linear complementary problem</topic><topic>Linear programming</topic><topic>Mathematical model</topic><topic>Mathematical programming</topic><topic>Programming</topic><toplevel>online_resources</toplevel><creatorcontrib>Longquan Yong</creatorcontrib><creatorcontrib>Shemin Zhang</creatorcontrib><creatorcontrib>Fang'an Deng</creatorcontrib><creatorcontrib>Wentao Xiong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Longquan Yong</au><au>Shemin Zhang</au><au>Fang'an Deng</au><au>Wentao Xiong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Feasible Interior Point Method for Absolute Value Equation</atitle><btitle>2011 Fourth International Conference on Information and Computing</btitle><stitle>ICIC</stitle><date>2011-04</date><risdate>2011</risdate><spage>256</spage><epage>259</epage><pages>256-259</pages><issn>2160-7443</issn><isbn>9781612846880</isbn><isbn>1612846882</isbn><abstract>A feasible interior point method is proposed for solving the NP-hard absolute value equation (AVE) when the singular values of A exceed one. We formulate the NP-hard AVE as linear complementary problem, and prove that the solution to AVE is existent and unique under suitable assumptions. Then we present a feasible interior point algorithm for AVE based on the Newton direction and centering direction. We show that this algorithm has the polynomial complexity. Preliminary numerical results show that this method is promising.</abstract><pub>IEEE</pub><doi>10.1109/ICIC.2011.65</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-7443
ispartof 2011 Fourth International Conference on Information and Computing, 2011, p.256-259
issn 2160-7443
language eng
recordid cdi_ieee_primary_5954554
source IEEE Electronic Library (IEL) Conference Proceedings
subjects absolute value equation
Convergence
Equations
feasible interior point method
linear complementary problem
Linear programming
Mathematical model
Mathematical programming
Programming
title Feasible Interior Point Method for Absolute Value Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Feasible%20Interior%20Point%20Method%20for%20Absolute%20Value%20Equation&rft.btitle=2011%20Fourth%20International%20Conference%20on%20Information%20and%20Computing&rft.au=Longquan%20Yong&rft.date=2011-04&rft.spage=256&rft.epage=259&rft.pages=256-259&rft.issn=2160-7443&rft.isbn=9781612846880&rft.isbn_list=1612846882&rft_id=info:doi/10.1109/ICIC.2011.65&rft_dat=%3Cieee_6IE%3E5954554%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5954554&rfr_iscdi=true