Feasible Interior Point Method for Absolute Value Equation
A feasible interior point method is proposed for solving the NP-hard absolute value equation (AVE) when the singular values of A exceed one. We formulate the NP-hard AVE as linear complementary problem, and prove that the solution to AVE is existent and unique under suitable assumptions. Then we pre...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 259 |
---|---|
container_issue | |
container_start_page | 256 |
container_title | |
container_volume | |
creator | Longquan Yong Shemin Zhang Fang'an Deng Wentao Xiong |
description | A feasible interior point method is proposed for solving the NP-hard absolute value equation (AVE) when the singular values of A exceed one. We formulate the NP-hard AVE as linear complementary problem, and prove that the solution to AVE is existent and unique under suitable assumptions. Then we present a feasible interior point algorithm for AVE based on the Newton direction and centering direction. We show that this algorithm has the polynomial complexity. Preliminary numerical results show that this method is promising. |
doi_str_mv | 10.1109/ICIC.2011.65 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5954554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5954554</ieee_id><sourcerecordid>5954554</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ee89be2e8b7813afecfbe43598ed834548e80067d36ecbf547007fefd0f9f6843</originalsourceid><addsrcrecordid>eNotjj1PwzAYhC1BJUrJxsbiP5Dgj9eOzVZFbYlU1A4Va2U3r4VRSCBxBv49QXDLSXen00PIPWcF58w-1lVdFYJxXmh1RTJbGq65MKCNYddkKbhmeQkgF-T2d2UFn4sbko3jO5ultRUAS_K0RTdG3yKtu4RD7Ad67GOX6Aumt76hYQ7WfuzbKSF9de2EdPM1uRT77o4sgmtHzP59RU7bzal6zveHXV2t93m0LOWIxnoUaPxMKF3AS_AIUlmDjZGgwKCZccpGarz4oKBkrAwYGhZs0Abkijz83UZEPH8O8cMN32dlFSgF8gdJpkkJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Feasible Interior Point Method for Absolute Value Equation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Longquan Yong ; Shemin Zhang ; Fang'an Deng ; Wentao Xiong</creator><creatorcontrib>Longquan Yong ; Shemin Zhang ; Fang'an Deng ; Wentao Xiong</creatorcontrib><description>A feasible interior point method is proposed for solving the NP-hard absolute value equation (AVE) when the singular values of A exceed one. We formulate the NP-hard AVE as linear complementary problem, and prove that the solution to AVE is existent and unique under suitable assumptions. Then we present a feasible interior point algorithm for AVE based on the Newton direction and centering direction. We show that this algorithm has the polynomial complexity. Preliminary numerical results show that this method is promising.</description><identifier>ISSN: 2160-7443</identifier><identifier>ISBN: 9781612846880</identifier><identifier>ISBN: 1612846882</identifier><identifier>DOI: 10.1109/ICIC.2011.65</identifier><identifier>LCCN: 2011921880</identifier><language>eng</language><publisher>IEEE</publisher><subject>absolute value equation ; Convergence ; Equations ; feasible interior point method ; linear complementary problem ; Linear programming ; Mathematical model ; Mathematical programming ; Programming</subject><ispartof>2011 Fourth International Conference on Information and Computing, 2011, p.256-259</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5954554$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5954554$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Longquan Yong</creatorcontrib><creatorcontrib>Shemin Zhang</creatorcontrib><creatorcontrib>Fang'an Deng</creatorcontrib><creatorcontrib>Wentao Xiong</creatorcontrib><title>Feasible Interior Point Method for Absolute Value Equation</title><title>2011 Fourth International Conference on Information and Computing</title><addtitle>ICIC</addtitle><description>A feasible interior point method is proposed for solving the NP-hard absolute value equation (AVE) when the singular values of A exceed one. We formulate the NP-hard AVE as linear complementary problem, and prove that the solution to AVE is existent and unique under suitable assumptions. Then we present a feasible interior point algorithm for AVE based on the Newton direction and centering direction. We show that this algorithm has the polynomial complexity. Preliminary numerical results show that this method is promising.</description><subject>absolute value equation</subject><subject>Convergence</subject><subject>Equations</subject><subject>feasible interior point method</subject><subject>linear complementary problem</subject><subject>Linear programming</subject><subject>Mathematical model</subject><subject>Mathematical programming</subject><subject>Programming</subject><issn>2160-7443</issn><isbn>9781612846880</isbn><isbn>1612846882</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjj1PwzAYhC1BJUrJxsbiP5Dgj9eOzVZFbYlU1A4Va2U3r4VRSCBxBv49QXDLSXen00PIPWcF58w-1lVdFYJxXmh1RTJbGq65MKCNYddkKbhmeQkgF-T2d2UFn4sbko3jO5ultRUAS_K0RTdG3yKtu4RD7Ad67GOX6Aumt76hYQ7WfuzbKSF9de2EdPM1uRT77o4sgmtHzP59RU7bzal6zveHXV2t93m0LOWIxnoUaPxMKF3AS_AIUlmDjZGgwKCZccpGarz4oKBkrAwYGhZs0Abkijz83UZEPH8O8cMN32dlFSgF8gdJpkkJ</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Longquan Yong</creator><creator>Shemin Zhang</creator><creator>Fang'an Deng</creator><creator>Wentao Xiong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201104</creationdate><title>Feasible Interior Point Method for Absolute Value Equation</title><author>Longquan Yong ; Shemin Zhang ; Fang'an Deng ; Wentao Xiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ee89be2e8b7813afecfbe43598ed834548e80067d36ecbf547007fefd0f9f6843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>absolute value equation</topic><topic>Convergence</topic><topic>Equations</topic><topic>feasible interior point method</topic><topic>linear complementary problem</topic><topic>Linear programming</topic><topic>Mathematical model</topic><topic>Mathematical programming</topic><topic>Programming</topic><toplevel>online_resources</toplevel><creatorcontrib>Longquan Yong</creatorcontrib><creatorcontrib>Shemin Zhang</creatorcontrib><creatorcontrib>Fang'an Deng</creatorcontrib><creatorcontrib>Wentao Xiong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Longquan Yong</au><au>Shemin Zhang</au><au>Fang'an Deng</au><au>Wentao Xiong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Feasible Interior Point Method for Absolute Value Equation</atitle><btitle>2011 Fourth International Conference on Information and Computing</btitle><stitle>ICIC</stitle><date>2011-04</date><risdate>2011</risdate><spage>256</spage><epage>259</epage><pages>256-259</pages><issn>2160-7443</issn><isbn>9781612846880</isbn><isbn>1612846882</isbn><abstract>A feasible interior point method is proposed for solving the NP-hard absolute value equation (AVE) when the singular values of A exceed one. We formulate the NP-hard AVE as linear complementary problem, and prove that the solution to AVE is existent and unique under suitable assumptions. Then we present a feasible interior point algorithm for AVE based on the Newton direction and centering direction. We show that this algorithm has the polynomial complexity. Preliminary numerical results show that this method is promising.</abstract><pub>IEEE</pub><doi>10.1109/ICIC.2011.65</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2160-7443 |
ispartof | 2011 Fourth International Conference on Information and Computing, 2011, p.256-259 |
issn | 2160-7443 |
language | eng |
recordid | cdi_ieee_primary_5954554 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | absolute value equation Convergence Equations feasible interior point method linear complementary problem Linear programming Mathematical model Mathematical programming Programming |
title | Feasible Interior Point Method for Absolute Value Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Feasible%20Interior%20Point%20Method%20for%20Absolute%20Value%20Equation&rft.btitle=2011%20Fourth%20International%20Conference%20on%20Information%20and%20Computing&rft.au=Longquan%20Yong&rft.date=2011-04&rft.spage=256&rft.epage=259&rft.pages=256-259&rft.issn=2160-7443&rft.isbn=9781612846880&rft.isbn_list=1612846882&rft_id=info:doi/10.1109/ICIC.2011.65&rft_dat=%3Cieee_6IE%3E5954554%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5954554&rfr_iscdi=true |