Circuit design and simulation of a transmit beamforming ASIC for high-frequency ultrasonic imaging systems
This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2011-07, Vol.58 (7), p.1320-1331 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1331 |
---|---|
container_issue | 7 |
container_start_page | 1320 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 58 |
creator | Athanasopoulos, G. I. Carey, S. J. Hatfield, J. V. |
description | This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively. |
doi_str_mv | 10.1109/TUFFC.2011.1952 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5953988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5953988</ieee_id><sourcerecordid>901671242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-88470ae562c6c9a084f1cda2f37abe65c498291dcfeca90af98994f53b7492e03</originalsourceid><addsrcrecordid>eNqF0c9rHCEUB3AJCc3mxzmHQpFC6Gk26uioxzB0k0CghybnwXV04zLjJL6Zw_73cbLbFHrpScSPj_feF6ErSpaUEn3z9Lxa1UtGKF1SLdgRWlDBRKG0EMdoQZQSRUkoOUVnAFtCKOeafUGnjMpKESoXaFuHZKcw4tZB2ERsYosh9FNnxjBEPHhs8JhMhD6btTO9H1If4gbf_n6ocb7gl7B5KXxyb5OLdoenLnMYYrA49GYzU9jB6Hq4QCfedOAuD-c5el79fKrvi8dfdw_17WNhORFjoRSXxDhRMVtZbYjintrWMF9Ks3aVsFwrpmlrvbNGE-O10pp7Ua5lHs6R8hz92Nd9TUNuCsamD2Bd15nohgkaTWglKePsv1JJxaTkXGX5_R-5HaYU8xgZZaVKNaObPbJpAEjON68p7yDtGkqaOa7mI65mjquZ48o_vh3KTuvetZ_-Tz4ZXB-AAWs6n5OwAf46XmrGCM_u694F59zns9Ci1Lmxd7WopkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>877828388</pqid></control><display><type>article</type><title>Circuit design and simulation of a transmit beamforming ASIC for high-frequency ultrasonic imaging systems</title><source>IEEE Electronic Library (IEL)</source><creator>Athanasopoulos, G. I. ; Carey, S. J. ; Hatfield, J. V.</creator><creatorcontrib>Athanasopoulos, G. I. ; Carey, S. J. ; Hatfield, J. V.</creatorcontrib><description>This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2011.1952</identifier><identifier>PMID: 21768017</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic signal processing ; Acoustics ; Channels ; Circuit design ; Clocks ; Control theory ; Delay ; Detectors ; Dynamic link libraries ; Equipment Design ; Exact sciences and technology ; Feedback ; Fundamental areas of phenomenology (including applications) ; Image edge detection ; Imaging ; Physics ; Signal Processing, Computer-Assisted ; Transducers ; Transduction; acoustical devices for the generation and reproduction of sound ; Transistors ; Ultrasonography - instrumentation ; Voltage control</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-07, Vol.58 (7), p.1320-1331</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-88470ae562c6c9a084f1cda2f37abe65c498291dcfeca90af98994f53b7492e03</citedby><cites>FETCH-LOGICAL-c405t-88470ae562c6c9a084f1cda2f37abe65c498291dcfeca90af98994f53b7492e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5953988$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5953988$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24392204$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21768017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Athanasopoulos, G. I.</creatorcontrib><creatorcontrib>Carey, S. J.</creatorcontrib><creatorcontrib>Hatfield, J. V.</creatorcontrib><title>Circuit design and simulation of a transmit beamforming ASIC for high-frequency ultrasonic imaging systems</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively.</description><subject>Acoustic signal processing</subject><subject>Acoustics</subject><subject>Channels</subject><subject>Circuit design</subject><subject>Clocks</subject><subject>Control theory</subject><subject>Delay</subject><subject>Detectors</subject><subject>Dynamic link libraries</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Image edge detection</subject><subject>Imaging</subject><subject>Physics</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Transducers</subject><subject>Transduction; acoustical devices for the generation and reproduction of sound</subject><subject>Transistors</subject><subject>Ultrasonography - instrumentation</subject><subject>Voltage control</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c9rHCEUB3AJCc3mxzmHQpFC6Gk26uioxzB0k0CghybnwXV04zLjJL6Zw_73cbLbFHrpScSPj_feF6ErSpaUEn3z9Lxa1UtGKF1SLdgRWlDBRKG0EMdoQZQSRUkoOUVnAFtCKOeafUGnjMpKESoXaFuHZKcw4tZB2ERsYosh9FNnxjBEPHhs8JhMhD6btTO9H1If4gbf_n6ocb7gl7B5KXxyb5OLdoenLnMYYrA49GYzU9jB6Hq4QCfedOAuD-c5el79fKrvi8dfdw_17WNhORFjoRSXxDhRMVtZbYjintrWMF9Ks3aVsFwrpmlrvbNGE-O10pp7Ua5lHs6R8hz92Nd9TUNuCsamD2Bd15nohgkaTWglKePsv1JJxaTkXGX5_R-5HaYU8xgZZaVKNaObPbJpAEjON68p7yDtGkqaOa7mI65mjquZ48o_vh3KTuvetZ_-Tz4ZXB-AAWs6n5OwAf46XmrGCM_u694F59zns9Ci1Lmxd7WopkY</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Athanasopoulos, G. I.</creator><creator>Carey, S. J.</creator><creator>Hatfield, J. V.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110701</creationdate><title>Circuit design and simulation of a transmit beamforming ASIC for high-frequency ultrasonic imaging systems</title><author>Athanasopoulos, G. I. ; Carey, S. J. ; Hatfield, J. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-88470ae562c6c9a084f1cda2f37abe65c498291dcfeca90af98994f53b7492e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustic signal processing</topic><topic>Acoustics</topic><topic>Channels</topic><topic>Circuit design</topic><topic>Clocks</topic><topic>Control theory</topic><topic>Delay</topic><topic>Detectors</topic><topic>Dynamic link libraries</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Image edge detection</topic><topic>Imaging</topic><topic>Physics</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Transducers</topic><topic>Transduction; acoustical devices for the generation and reproduction of sound</topic><topic>Transistors</topic><topic>Ultrasonography - instrumentation</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athanasopoulos, G. I.</creatorcontrib><creatorcontrib>Carey, S. J.</creatorcontrib><creatorcontrib>Hatfield, J. V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Athanasopoulos, G. I.</au><au>Carey, S. J.</au><au>Hatfield, J. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circuit design and simulation of a transmit beamforming ASIC for high-frequency ultrasonic imaging systems</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>58</volume><issue>7</issue><spage>1320</spage><epage>1331</epage><pages>1320-1331</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>21768017</pmid><doi>10.1109/TUFFC.2011.1952</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-07, Vol.58 (7), p.1320-1331 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_ieee_primary_5953988 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic signal processing Acoustics Channels Circuit design Clocks Control theory Delay Detectors Dynamic link libraries Equipment Design Exact sciences and technology Feedback Fundamental areas of phenomenology (including applications) Image edge detection Imaging Physics Signal Processing, Computer-Assisted Transducers Transduction acoustical devices for the generation and reproduction of sound Transistors Ultrasonography - instrumentation Voltage control |
title | Circuit design and simulation of a transmit beamforming ASIC for high-frequency ultrasonic imaging systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A45%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circuit%20design%20and%20simulation%20of%20a%20transmit%20beamforming%20ASIC%20for%20high-frequency%20ultrasonic%20imaging%20systems&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Athanasopoulos,%20G.%20I.&rft.date=2011-07-01&rft.volume=58&rft.issue=7&rft.spage=1320&rft.epage=1331&rft.pages=1320-1331&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2011.1952&rft_dat=%3Cproquest_RIE%3E901671242%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=877828388&rft_id=info:pmid/21768017&rft_ieee_id=5953988&rfr_iscdi=true |