Circuit design and simulation of a transmit beamforming ASIC for high-frequency ultrasonic imaging systems

This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2011-07, Vol.58 (7), p.1320-1331
Hauptverfasser: Athanasopoulos, G. I., Carey, S. J., Hatfield, J. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1331
container_issue 7
container_start_page 1320
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 58
creator Athanasopoulos, G. I.
Carey, S. J.
Hatfield, J. V.
description This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively.
doi_str_mv 10.1109/TUFFC.2011.1952
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5953988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5953988</ieee_id><sourcerecordid>901671242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-88470ae562c6c9a084f1cda2f37abe65c498291dcfeca90af98994f53b7492e03</originalsourceid><addsrcrecordid>eNqF0c9rHCEUB3AJCc3mxzmHQpFC6Gk26uioxzB0k0CghybnwXV04zLjJL6Zw_73cbLbFHrpScSPj_feF6ErSpaUEn3z9Lxa1UtGKF1SLdgRWlDBRKG0EMdoQZQSRUkoOUVnAFtCKOeafUGnjMpKESoXaFuHZKcw4tZB2ERsYosh9FNnxjBEPHhs8JhMhD6btTO9H1If4gbf_n6ocb7gl7B5KXxyb5OLdoenLnMYYrA49GYzU9jB6Hq4QCfedOAuD-c5el79fKrvi8dfdw_17WNhORFjoRSXxDhRMVtZbYjintrWMF9Ks3aVsFwrpmlrvbNGE-O10pp7Ua5lHs6R8hz92Nd9TUNuCsamD2Bd15nohgkaTWglKePsv1JJxaTkXGX5_R-5HaYU8xgZZaVKNaObPbJpAEjON68p7yDtGkqaOa7mI65mjquZ48o_vh3KTuvetZ_-Tz4ZXB-AAWs6n5OwAf46XmrGCM_u694F59zns9Ci1Lmxd7WopkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>877828388</pqid></control><display><type>article</type><title>Circuit design and simulation of a transmit beamforming ASIC for high-frequency ultrasonic imaging systems</title><source>IEEE Electronic Library (IEL)</source><creator>Athanasopoulos, G. I. ; Carey, S. J. ; Hatfield, J. V.</creator><creatorcontrib>Athanasopoulos, G. I. ; Carey, S. J. ; Hatfield, J. V.</creatorcontrib><description>This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2011.1952</identifier><identifier>PMID: 21768017</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic signal processing ; Acoustics ; Channels ; Circuit design ; Clocks ; Control theory ; Delay ; Detectors ; Dynamic link libraries ; Equipment Design ; Exact sciences and technology ; Feedback ; Fundamental areas of phenomenology (including applications) ; Image edge detection ; Imaging ; Physics ; Signal Processing, Computer-Assisted ; Transducers ; Transduction; acoustical devices for the generation and reproduction of sound ; Transistors ; Ultrasonography - instrumentation ; Voltage control</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-07, Vol.58 (7), p.1320-1331</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-88470ae562c6c9a084f1cda2f37abe65c498291dcfeca90af98994f53b7492e03</citedby><cites>FETCH-LOGICAL-c405t-88470ae562c6c9a084f1cda2f37abe65c498291dcfeca90af98994f53b7492e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5953988$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5953988$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24392204$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21768017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Athanasopoulos, G. I.</creatorcontrib><creatorcontrib>Carey, S. J.</creatorcontrib><creatorcontrib>Hatfield, J. V.</creatorcontrib><title>Circuit design and simulation of a transmit beamforming ASIC for high-frequency ultrasonic imaging systems</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively.</description><subject>Acoustic signal processing</subject><subject>Acoustics</subject><subject>Channels</subject><subject>Circuit design</subject><subject>Clocks</subject><subject>Control theory</subject><subject>Delay</subject><subject>Detectors</subject><subject>Dynamic link libraries</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Image edge detection</subject><subject>Imaging</subject><subject>Physics</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Transducers</subject><subject>Transduction; acoustical devices for the generation and reproduction of sound</subject><subject>Transistors</subject><subject>Ultrasonography - instrumentation</subject><subject>Voltage control</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c9rHCEUB3AJCc3mxzmHQpFC6Gk26uioxzB0k0CghybnwXV04zLjJL6Zw_73cbLbFHrpScSPj_feF6ErSpaUEn3z9Lxa1UtGKF1SLdgRWlDBRKG0EMdoQZQSRUkoOUVnAFtCKOeafUGnjMpKESoXaFuHZKcw4tZB2ERsYosh9FNnxjBEPHhs8JhMhD6btTO9H1If4gbf_n6ocb7gl7B5KXxyb5OLdoenLnMYYrA49GYzU9jB6Hq4QCfedOAuD-c5el79fKrvi8dfdw_17WNhORFjoRSXxDhRMVtZbYjintrWMF9Ks3aVsFwrpmlrvbNGE-O10pp7Ua5lHs6R8hz92Nd9TUNuCsamD2Bd15nohgkaTWglKePsv1JJxaTkXGX5_R-5HaYU8xgZZaVKNaObPbJpAEjON68p7yDtGkqaOa7mI65mjquZ48o_vh3KTuvetZ_-Tz4ZXB-AAWs6n5OwAf46XmrGCM_u694F59zns9Ci1Lmxd7WopkY</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Athanasopoulos, G. I.</creator><creator>Carey, S. J.</creator><creator>Hatfield, J. V.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110701</creationdate><title>Circuit design and simulation of a transmit beamforming ASIC for high-frequency ultrasonic imaging systems</title><author>Athanasopoulos, G. I. ; Carey, S. J. ; Hatfield, J. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-88470ae562c6c9a084f1cda2f37abe65c498291dcfeca90af98994f53b7492e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustic signal processing</topic><topic>Acoustics</topic><topic>Channels</topic><topic>Circuit design</topic><topic>Clocks</topic><topic>Control theory</topic><topic>Delay</topic><topic>Detectors</topic><topic>Dynamic link libraries</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Image edge detection</topic><topic>Imaging</topic><topic>Physics</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Transducers</topic><topic>Transduction; acoustical devices for the generation and reproduction of sound</topic><topic>Transistors</topic><topic>Ultrasonography - instrumentation</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athanasopoulos, G. I.</creatorcontrib><creatorcontrib>Carey, S. J.</creatorcontrib><creatorcontrib>Hatfield, J. V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Athanasopoulos, G. I.</au><au>Carey, S. J.</au><au>Hatfield, J. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circuit design and simulation of a transmit beamforming ASIC for high-frequency ultrasonic imaging systems</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>58</volume><issue>7</issue><spage>1320</spage><epage>1331</epage><pages>1320-1331</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>21768017</pmid><doi>10.1109/TUFFC.2011.1952</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-07, Vol.58 (7), p.1320-1331
issn 0885-3010
1525-8955
language eng
recordid cdi_ieee_primary_5953988
source IEEE Electronic Library (IEL)
subjects Acoustic signal processing
Acoustics
Channels
Circuit design
Clocks
Control theory
Delay
Detectors
Dynamic link libraries
Equipment Design
Exact sciences and technology
Feedback
Fundamental areas of phenomenology (including applications)
Image edge detection
Imaging
Physics
Signal Processing, Computer-Assisted
Transducers
Transduction
acoustical devices for the generation and reproduction of sound
Transistors
Ultrasonography - instrumentation
Voltage control
title Circuit design and simulation of a transmit beamforming ASIC for high-frequency ultrasonic imaging systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A45%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circuit%20design%20and%20simulation%20of%20a%20transmit%20beamforming%20ASIC%20for%20high-frequency%20ultrasonic%20imaging%20systems&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Athanasopoulos,%20G.%20I.&rft.date=2011-07-01&rft.volume=58&rft.issue=7&rft.spage=1320&rft.epage=1331&rft.pages=1320-1331&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2011.1952&rft_dat=%3Cproquest_RIE%3E901671242%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=877828388&rft_id=info:pmid/21768017&rft_ieee_id=5953988&rfr_iscdi=true