Facial gesture recognition using two-channel bio-sensors configuration and fuzzy classifier: A pilot study
Facial gesture recognition has become an important issue in diagnostic, medical and industrial fields. Automatic recognition of facial gestures could be considered as an important factor in human-machine interface applications. Facial gesture recognition based on surface electromyography (SEMG) has...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 343 |
---|---|
container_issue | |
container_start_page | 338 |
container_title | |
container_volume | |
creator | Hamedi, M. Rezazadeh, Iman Mohammad Firoozabadi, M. |
description | Facial gesture recognition has become an important issue in diagnostic, medical and industrial fields. Automatic recognition of facial gestures could be considered as an important factor in human-machine interface applications. Facial gesture recognition based on surface electromyography (SEMG) has been well thought-out in the recent decade. SEMG has accurate rates for facial gesture recognition since it records the electrical potential from facial muscles. This paper presents a method for recognizing 5 different facial gestures based on forehead two-channels bioelectric-signals. The recorded signals were processed in four steps: filtration, feature extraction (RMS), thresholding, and classification. The extracted features were classified into 5 facial gesture classes (rest, smile, frown, rage, and gesturing `notch' by pulling up the eyebrows) by utilizing Fuzzy C-Means (FCM) classifier. Finally 90.8% recognition ratio has been achieved by applying our method on 4 subjects. |
doi_str_mv | 10.1109/INECCE.2011.5953903 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5953903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5953903</ieee_id><sourcerecordid>5953903</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-91886320431aa0e156e35d228b3222b522fea452fba573de9895365fa35dc3f3</originalsourceid><addsrcrecordid>eNotkFFLwzAUhSMiqHO_YC_5A53JzdI1vo2y6WDog76P2_amZtRkJC2y_XqL23k5HPg4cA5jMynmUgrzvH1fl-V6DkLKuTZaGaFu2KPMJRQLUELfsqlZFtcMRt-zaUoHMSrPjTTmgR02WDvseEupHyLxSHVovetd8HxIzre8_w1Z_Y3eU8crF7JEPoWYeB28de0Q8Z9F33A7nM8nXneYkrOO4gtf8aPrQs_H7ub0xO4sdommV5-wz836q3zLdh-v23K1y5wRfWZkUeQKxEJJREFS56R0A1BUCgAqDWAJFxpshXqpGjLFuDvXFkeqVlZN2OzS6ohof4zuB-Npfz1H_QG_KVoW</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Facial gesture recognition using two-channel bio-sensors configuration and fuzzy classifier: A pilot study</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hamedi, M. ; Rezazadeh, Iman Mohammad ; Firoozabadi, M.</creator><creatorcontrib>Hamedi, M. ; Rezazadeh, Iman Mohammad ; Firoozabadi, M.</creatorcontrib><description>Facial gesture recognition has become an important issue in diagnostic, medical and industrial fields. Automatic recognition of facial gestures could be considered as an important factor in human-machine interface applications. Facial gesture recognition based on surface electromyography (SEMG) has been well thought-out in the recent decade. SEMG has accurate rates for facial gesture recognition since it records the electrical potential from facial muscles. This paper presents a method for recognizing 5 different facial gestures based on forehead two-channels bioelectric-signals. The recorded signals were processed in four steps: filtration, feature extraction (RMS), thresholding, and classification. The extracted features were classified into 5 facial gesture classes (rest, smile, frown, rage, and gesturing `notch' by pulling up the eyebrows) by utilizing Fuzzy C-Means (FCM) classifier. Finally 90.8% recognition ratio has been achieved by applying our method on 4 subjects.</description><identifier>ISBN: 9781612842295</identifier><identifier>ISBN: 1612842291</identifier><identifier>EISBN: 1612842305</identifier><identifier>EISBN: 9781612842288</identifier><identifier>EISBN: 9781612842301</identifier><identifier>EISBN: 1612842283</identifier><identifier>DOI: 10.1109/INECCE.2011.5953903</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electrodes ; Electromyography ; Face recognition ; Facial gesture recognition ; Facial muscles ; Feature extraction ; Fuzzy C-Means (FCM) ; Gesture recognition ; Muscles ; SEMG</subject><ispartof>International Conference on Electrical, Control and Computer Engineering 2011 (InECCE), 2011, p.338-343</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5953903$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5953903$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hamedi, M.</creatorcontrib><creatorcontrib>Rezazadeh, Iman Mohammad</creatorcontrib><creatorcontrib>Firoozabadi, M.</creatorcontrib><title>Facial gesture recognition using two-channel bio-sensors configuration and fuzzy classifier: A pilot study</title><title>International Conference on Electrical, Control and Computer Engineering 2011 (InECCE)</title><addtitle>INECCE</addtitle><description>Facial gesture recognition has become an important issue in diagnostic, medical and industrial fields. Automatic recognition of facial gestures could be considered as an important factor in human-machine interface applications. Facial gesture recognition based on surface electromyography (SEMG) has been well thought-out in the recent decade. SEMG has accurate rates for facial gesture recognition since it records the electrical potential from facial muscles. This paper presents a method for recognizing 5 different facial gestures based on forehead two-channels bioelectric-signals. The recorded signals were processed in four steps: filtration, feature extraction (RMS), thresholding, and classification. The extracted features were classified into 5 facial gesture classes (rest, smile, frown, rage, and gesturing `notch' by pulling up the eyebrows) by utilizing Fuzzy C-Means (FCM) classifier. Finally 90.8% recognition ratio has been achieved by applying our method on 4 subjects.</description><subject>Electrodes</subject><subject>Electromyography</subject><subject>Face recognition</subject><subject>Facial gesture recognition</subject><subject>Facial muscles</subject><subject>Feature extraction</subject><subject>Fuzzy C-Means (FCM)</subject><subject>Gesture recognition</subject><subject>Muscles</subject><subject>SEMG</subject><isbn>9781612842295</isbn><isbn>1612842291</isbn><isbn>1612842305</isbn><isbn>9781612842288</isbn><isbn>9781612842301</isbn><isbn>1612842283</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkFFLwzAUhSMiqHO_YC_5A53JzdI1vo2y6WDog76P2_amZtRkJC2y_XqL23k5HPg4cA5jMynmUgrzvH1fl-V6DkLKuTZaGaFu2KPMJRQLUELfsqlZFtcMRt-zaUoHMSrPjTTmgR02WDvseEupHyLxSHVovetd8HxIzre8_w1Z_Y3eU8crF7JEPoWYeB28de0Q8Z9F33A7nM8nXneYkrOO4gtf8aPrQs_H7ub0xO4sdommV5-wz836q3zLdh-v23K1y5wRfWZkUeQKxEJJREFS56R0A1BUCgAqDWAJFxpshXqpGjLFuDvXFkeqVlZN2OzS6ohof4zuB-Npfz1H_QG_KVoW</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Hamedi, M.</creator><creator>Rezazadeh, Iman Mohammad</creator><creator>Firoozabadi, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Facial gesture recognition using two-channel bio-sensors configuration and fuzzy classifier: A pilot study</title><author>Hamedi, M. ; Rezazadeh, Iman Mohammad ; Firoozabadi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-91886320431aa0e156e35d228b3222b522fea452fba573de9895365fa35dc3f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Electrodes</topic><topic>Electromyography</topic><topic>Face recognition</topic><topic>Facial gesture recognition</topic><topic>Facial muscles</topic><topic>Feature extraction</topic><topic>Fuzzy C-Means (FCM)</topic><topic>Gesture recognition</topic><topic>Muscles</topic><topic>SEMG</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamedi, M.</creatorcontrib><creatorcontrib>Rezazadeh, Iman Mohammad</creatorcontrib><creatorcontrib>Firoozabadi, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hamedi, M.</au><au>Rezazadeh, Iman Mohammad</au><au>Firoozabadi, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Facial gesture recognition using two-channel bio-sensors configuration and fuzzy classifier: A pilot study</atitle><btitle>International Conference on Electrical, Control and Computer Engineering 2011 (InECCE)</btitle><stitle>INECCE</stitle><date>2011-06</date><risdate>2011</risdate><spage>338</spage><epage>343</epage><pages>338-343</pages><isbn>9781612842295</isbn><isbn>1612842291</isbn><eisbn>1612842305</eisbn><eisbn>9781612842288</eisbn><eisbn>9781612842301</eisbn><eisbn>1612842283</eisbn><abstract>Facial gesture recognition has become an important issue in diagnostic, medical and industrial fields. Automatic recognition of facial gestures could be considered as an important factor in human-machine interface applications. Facial gesture recognition based on surface electromyography (SEMG) has been well thought-out in the recent decade. SEMG has accurate rates for facial gesture recognition since it records the electrical potential from facial muscles. This paper presents a method for recognizing 5 different facial gestures based on forehead two-channels bioelectric-signals. The recorded signals were processed in four steps: filtration, feature extraction (RMS), thresholding, and classification. The extracted features were classified into 5 facial gesture classes (rest, smile, frown, rage, and gesturing `notch' by pulling up the eyebrows) by utilizing Fuzzy C-Means (FCM) classifier. Finally 90.8% recognition ratio has been achieved by applying our method on 4 subjects.</abstract><pub>IEEE</pub><doi>10.1109/INECCE.2011.5953903</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781612842295 |
ispartof | International Conference on Electrical, Control and Computer Engineering 2011 (InECCE), 2011, p.338-343 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5953903 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Electrodes Electromyography Face recognition Facial gesture recognition Facial muscles Feature extraction Fuzzy C-Means (FCM) Gesture recognition Muscles SEMG |
title | Facial gesture recognition using two-channel bio-sensors configuration and fuzzy classifier: A pilot study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Facial%20gesture%20recognition%20using%20two-channel%20bio-sensors%20configuration%20and%20fuzzy%20classifier:%20A%20pilot%20study&rft.btitle=International%20Conference%20on%20Electrical,%20Control%20and%20Computer%20Engineering%202011%20(InECCE)&rft.au=Hamedi,%20M.&rft.date=2011-06&rft.spage=338&rft.epage=343&rft.pages=338-343&rft.isbn=9781612842295&rft.isbn_list=1612842291&rft_id=info:doi/10.1109/INECCE.2011.5953903&rft_dat=%3Cieee_6IE%3E5953903%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612842305&rft.eisbn_list=9781612842288&rft.eisbn_list=9781612842301&rft.eisbn_list=1612842283&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5953903&rfr_iscdi=true |