Facial gesture recognition using two-channel bio-sensors configuration and fuzzy classifier: A pilot study

Facial gesture recognition has become an important issue in diagnostic, medical and industrial fields. Automatic recognition of facial gestures could be considered as an important factor in human-machine interface applications. Facial gesture recognition based on surface electromyography (SEMG) has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hamedi, M., Rezazadeh, Iman Mohammad, Firoozabadi, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 343
container_issue
container_start_page 338
container_title
container_volume
creator Hamedi, M.
Rezazadeh, Iman Mohammad
Firoozabadi, M.
description Facial gesture recognition has become an important issue in diagnostic, medical and industrial fields. Automatic recognition of facial gestures could be considered as an important factor in human-machine interface applications. Facial gesture recognition based on surface electromyography (SEMG) has been well thought-out in the recent decade. SEMG has accurate rates for facial gesture recognition since it records the electrical potential from facial muscles. This paper presents a method for recognizing 5 different facial gestures based on forehead two-channels bioelectric-signals. The recorded signals were processed in four steps: filtration, feature extraction (RMS), thresholding, and classification. The extracted features were classified into 5 facial gesture classes (rest, smile, frown, rage, and gesturing `notch' by pulling up the eyebrows) by utilizing Fuzzy C-Means (FCM) classifier. Finally 90.8% recognition ratio has been achieved by applying our method on 4 subjects.
doi_str_mv 10.1109/INECCE.2011.5953903
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5953903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5953903</ieee_id><sourcerecordid>5953903</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-91886320431aa0e156e35d228b3222b522fea452fba573de9895365fa35dc3f3</originalsourceid><addsrcrecordid>eNotkFFLwzAUhSMiqHO_YC_5A53JzdI1vo2y6WDog76P2_amZtRkJC2y_XqL23k5HPg4cA5jMynmUgrzvH1fl-V6DkLKuTZaGaFu2KPMJRQLUELfsqlZFtcMRt-zaUoHMSrPjTTmgR02WDvseEupHyLxSHVovetd8HxIzre8_w1Z_Y3eU8crF7JEPoWYeB28de0Q8Z9F33A7nM8nXneYkrOO4gtf8aPrQs_H7ub0xO4sdommV5-wz836q3zLdh-v23K1y5wRfWZkUeQKxEJJREFS56R0A1BUCgAqDWAJFxpshXqpGjLFuDvXFkeqVlZN2OzS6ohof4zuB-Npfz1H_QG_KVoW</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Facial gesture recognition using two-channel bio-sensors configuration and fuzzy classifier: A pilot study</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hamedi, M. ; Rezazadeh, Iman Mohammad ; Firoozabadi, M.</creator><creatorcontrib>Hamedi, M. ; Rezazadeh, Iman Mohammad ; Firoozabadi, M.</creatorcontrib><description>Facial gesture recognition has become an important issue in diagnostic, medical and industrial fields. Automatic recognition of facial gestures could be considered as an important factor in human-machine interface applications. Facial gesture recognition based on surface electromyography (SEMG) has been well thought-out in the recent decade. SEMG has accurate rates for facial gesture recognition since it records the electrical potential from facial muscles. This paper presents a method for recognizing 5 different facial gestures based on forehead two-channels bioelectric-signals. The recorded signals were processed in four steps: filtration, feature extraction (RMS), thresholding, and classification. The extracted features were classified into 5 facial gesture classes (rest, smile, frown, rage, and gesturing `notch' by pulling up the eyebrows) by utilizing Fuzzy C-Means (FCM) classifier. Finally 90.8% recognition ratio has been achieved by applying our method on 4 subjects.</description><identifier>ISBN: 9781612842295</identifier><identifier>ISBN: 1612842291</identifier><identifier>EISBN: 1612842305</identifier><identifier>EISBN: 9781612842288</identifier><identifier>EISBN: 9781612842301</identifier><identifier>EISBN: 1612842283</identifier><identifier>DOI: 10.1109/INECCE.2011.5953903</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electrodes ; Electromyography ; Face recognition ; Facial gesture recognition ; Facial muscles ; Feature extraction ; Fuzzy C-Means (FCM) ; Gesture recognition ; Muscles ; SEMG</subject><ispartof>International Conference on Electrical, Control and Computer Engineering 2011 (InECCE), 2011, p.338-343</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5953903$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5953903$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hamedi, M.</creatorcontrib><creatorcontrib>Rezazadeh, Iman Mohammad</creatorcontrib><creatorcontrib>Firoozabadi, M.</creatorcontrib><title>Facial gesture recognition using two-channel bio-sensors configuration and fuzzy classifier: A pilot study</title><title>International Conference on Electrical, Control and Computer Engineering 2011 (InECCE)</title><addtitle>INECCE</addtitle><description>Facial gesture recognition has become an important issue in diagnostic, medical and industrial fields. Automatic recognition of facial gestures could be considered as an important factor in human-machine interface applications. Facial gesture recognition based on surface electromyography (SEMG) has been well thought-out in the recent decade. SEMG has accurate rates for facial gesture recognition since it records the electrical potential from facial muscles. This paper presents a method for recognizing 5 different facial gestures based on forehead two-channels bioelectric-signals. The recorded signals were processed in four steps: filtration, feature extraction (RMS), thresholding, and classification. The extracted features were classified into 5 facial gesture classes (rest, smile, frown, rage, and gesturing `notch' by pulling up the eyebrows) by utilizing Fuzzy C-Means (FCM) classifier. Finally 90.8% recognition ratio has been achieved by applying our method on 4 subjects.</description><subject>Electrodes</subject><subject>Electromyography</subject><subject>Face recognition</subject><subject>Facial gesture recognition</subject><subject>Facial muscles</subject><subject>Feature extraction</subject><subject>Fuzzy C-Means (FCM)</subject><subject>Gesture recognition</subject><subject>Muscles</subject><subject>SEMG</subject><isbn>9781612842295</isbn><isbn>1612842291</isbn><isbn>1612842305</isbn><isbn>9781612842288</isbn><isbn>9781612842301</isbn><isbn>1612842283</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkFFLwzAUhSMiqHO_YC_5A53JzdI1vo2y6WDog76P2_amZtRkJC2y_XqL23k5HPg4cA5jMynmUgrzvH1fl-V6DkLKuTZaGaFu2KPMJRQLUELfsqlZFtcMRt-zaUoHMSrPjTTmgR02WDvseEupHyLxSHVovetd8HxIzre8_w1Z_Y3eU8crF7JEPoWYeB28de0Q8Z9F33A7nM8nXneYkrOO4gtf8aPrQs_H7ub0xO4sdommV5-wz836q3zLdh-v23K1y5wRfWZkUeQKxEJJREFS56R0A1BUCgAqDWAJFxpshXqpGjLFuDvXFkeqVlZN2OzS6ohof4zuB-Npfz1H_QG_KVoW</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Hamedi, M.</creator><creator>Rezazadeh, Iman Mohammad</creator><creator>Firoozabadi, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Facial gesture recognition using two-channel bio-sensors configuration and fuzzy classifier: A pilot study</title><author>Hamedi, M. ; Rezazadeh, Iman Mohammad ; Firoozabadi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-91886320431aa0e156e35d228b3222b522fea452fba573de9895365fa35dc3f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Electrodes</topic><topic>Electromyography</topic><topic>Face recognition</topic><topic>Facial gesture recognition</topic><topic>Facial muscles</topic><topic>Feature extraction</topic><topic>Fuzzy C-Means (FCM)</topic><topic>Gesture recognition</topic><topic>Muscles</topic><topic>SEMG</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamedi, M.</creatorcontrib><creatorcontrib>Rezazadeh, Iman Mohammad</creatorcontrib><creatorcontrib>Firoozabadi, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hamedi, M.</au><au>Rezazadeh, Iman Mohammad</au><au>Firoozabadi, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Facial gesture recognition using two-channel bio-sensors configuration and fuzzy classifier: A pilot study</atitle><btitle>International Conference on Electrical, Control and Computer Engineering 2011 (InECCE)</btitle><stitle>INECCE</stitle><date>2011-06</date><risdate>2011</risdate><spage>338</spage><epage>343</epage><pages>338-343</pages><isbn>9781612842295</isbn><isbn>1612842291</isbn><eisbn>1612842305</eisbn><eisbn>9781612842288</eisbn><eisbn>9781612842301</eisbn><eisbn>1612842283</eisbn><abstract>Facial gesture recognition has become an important issue in diagnostic, medical and industrial fields. Automatic recognition of facial gestures could be considered as an important factor in human-machine interface applications. Facial gesture recognition based on surface electromyography (SEMG) has been well thought-out in the recent decade. SEMG has accurate rates for facial gesture recognition since it records the electrical potential from facial muscles. This paper presents a method for recognizing 5 different facial gestures based on forehead two-channels bioelectric-signals. The recorded signals were processed in four steps: filtration, feature extraction (RMS), thresholding, and classification. The extracted features were classified into 5 facial gesture classes (rest, smile, frown, rage, and gesturing `notch' by pulling up the eyebrows) by utilizing Fuzzy C-Means (FCM) classifier. Finally 90.8% recognition ratio has been achieved by applying our method on 4 subjects.</abstract><pub>IEEE</pub><doi>10.1109/INECCE.2011.5953903</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781612842295
ispartof International Conference on Electrical, Control and Computer Engineering 2011 (InECCE), 2011, p.338-343
issn
language eng
recordid cdi_ieee_primary_5953903
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Electrodes
Electromyography
Face recognition
Facial gesture recognition
Facial muscles
Feature extraction
Fuzzy C-Means (FCM)
Gesture recognition
Muscles
SEMG
title Facial gesture recognition using two-channel bio-sensors configuration and fuzzy classifier: A pilot study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Facial%20gesture%20recognition%20using%20two-channel%20bio-sensors%20configuration%20and%20fuzzy%20classifier:%20A%20pilot%20study&rft.btitle=International%20Conference%20on%20Electrical,%20Control%20and%20Computer%20Engineering%202011%20(InECCE)&rft.au=Hamedi,%20M.&rft.date=2011-06&rft.spage=338&rft.epage=343&rft.pages=338-343&rft.isbn=9781612842295&rft.isbn_list=1612842291&rft_id=info:doi/10.1109/INECCE.2011.5953903&rft_dat=%3Cieee_6IE%3E5953903%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612842305&rft.eisbn_list=9781612842288&rft.eisbn_list=9781612842301&rft.eisbn_list=1612842283&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5953903&rfr_iscdi=true