Automatic retinal vessel tortuosity measurement using curvature of improved chain code
Measurement of blood vessel tortuosity is a useful capability for automatic ophthalmological diagnostic tools. Screening of Retinopathy of Prematurity (ROP), a disease of eye that affects premature infants, for example, depends crucially on automatic tortuosity evaluation. Quite a few techniques for...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186 |
---|---|
container_issue | |
container_start_page | 183 |
container_title | |
container_volume | |
creator | Onkaew, D. Turior, R. Uyyanonvara, B. Akinori, N. Sinthanayothin, C. |
description | Measurement of blood vessel tortuosity is a useful capability for automatic ophthalmological diagnostic tools. Screening of Retinopathy of Prematurity (ROP), a disease of eye that affects premature infants, for example, depends crucially on automatic tortuosity evaluation. Quite a few techniques for tortuosity measurement and classification have been proposed, but they do not always match the clinical concept of tortuosity. In this paper, we propose the alternative method of automatic tortuosity measurement for retinal blood vessels that uses the curvature calculated from improved chain code algorithm taking the number of inflection point into account. The tortuosity calculated from the proposed method is independent of the segmentation of vessel tree. Our algorithm can automatically classify the image as tortuous or non-tortuous. The test results are verified against two expert ophthalmologists. For an optimal set of training parameters the prediction is as high as 100% on 18 images. |
doi_str_mv | 10.1109/INECCE.2011.5953872 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5953872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5953872</ieee_id><sourcerecordid>5953872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c140t-b19efedf2b3f087212e0582d65c4ebc602efbfa4b8a08cac166d21ff4fc155833</originalsourceid><addsrcrecordid>eNotkM9KAzEYxCMiqLVP0EteYGu-ZJMmx7JULZR6Ua8lm_2ikf1Tkmyhb--CO5dhfodhGEJWwNYAzDzvj7uq2q05A1hLI4Xe8BvyCAq4Lrlg8pYszUbPmRt5T5Yp_bJJShkw5oF8bcc8dDYHRyPm0NuWXjAlbGkeYh6HFPKVdmjTGLHDPtMxhf6bujFebJ4YHTwN3TkOF2yo-7Ghp25o8IncedsmXM6-IJ8vu4_qrTi8v-6r7aFwULJc1GDQY-N5LTybxgNHJjVvlHQl1k4xjr72tqy1ZdpZB0o1HLwvvQMptRALsvrvDYh4OsfQ2Xg9zVeIP2yIVSs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic retinal vessel tortuosity measurement using curvature of improved chain code</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Onkaew, D. ; Turior, R. ; Uyyanonvara, B. ; Akinori, N. ; Sinthanayothin, C.</creator><creatorcontrib>Onkaew, D. ; Turior, R. ; Uyyanonvara, B. ; Akinori, N. ; Sinthanayothin, C.</creatorcontrib><description>Measurement of blood vessel tortuosity is a useful capability for automatic ophthalmological diagnostic tools. Screening of Retinopathy of Prematurity (ROP), a disease of eye that affects premature infants, for example, depends crucially on automatic tortuosity evaluation. Quite a few techniques for tortuosity measurement and classification have been proposed, but they do not always match the clinical concept of tortuosity. In this paper, we propose the alternative method of automatic tortuosity measurement for retinal blood vessels that uses the curvature calculated from improved chain code algorithm taking the number of inflection point into account. The tortuosity calculated from the proposed method is independent of the segmentation of vessel tree. Our algorithm can automatically classify the image as tortuous or non-tortuous. The test results are verified against two expert ophthalmologists. For an optimal set of training parameters the prediction is as high as 100% on 18 images.</description><identifier>ISBN: 9781612842295</identifier><identifier>ISBN: 1612842291</identifier><identifier>EISBN: 1612842305</identifier><identifier>EISBN: 9781612842288</identifier><identifier>EISBN: 9781612842301</identifier><identifier>EISBN: 1612842283</identifier><identifier>DOI: 10.1109/INECCE.2011.5953872</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Blood vessels ; Pixel ; Retinal vessels ; Retinopathy ; Training</subject><ispartof>International Conference on Electrical, Control and Computer Engineering 2011 (InECCE), 2011, p.183-186</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c140t-b19efedf2b3f087212e0582d65c4ebc602efbfa4b8a08cac166d21ff4fc155833</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5953872$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5953872$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Onkaew, D.</creatorcontrib><creatorcontrib>Turior, R.</creatorcontrib><creatorcontrib>Uyyanonvara, B.</creatorcontrib><creatorcontrib>Akinori, N.</creatorcontrib><creatorcontrib>Sinthanayothin, C.</creatorcontrib><title>Automatic retinal vessel tortuosity measurement using curvature of improved chain code</title><title>International Conference on Electrical, Control and Computer Engineering 2011 (InECCE)</title><addtitle>INECCE</addtitle><description>Measurement of blood vessel tortuosity is a useful capability for automatic ophthalmological diagnostic tools. Screening of Retinopathy of Prematurity (ROP), a disease of eye that affects premature infants, for example, depends crucially on automatic tortuosity evaluation. Quite a few techniques for tortuosity measurement and classification have been proposed, but they do not always match the clinical concept of tortuosity. In this paper, we propose the alternative method of automatic tortuosity measurement for retinal blood vessels that uses the curvature calculated from improved chain code algorithm taking the number of inflection point into account. The tortuosity calculated from the proposed method is independent of the segmentation of vessel tree. Our algorithm can automatically classify the image as tortuous or non-tortuous. The test results are verified against two expert ophthalmologists. For an optimal set of training parameters the prediction is as high as 100% on 18 images.</description><subject>Biomedical imaging</subject><subject>Blood vessels</subject><subject>Pixel</subject><subject>Retinal vessels</subject><subject>Retinopathy</subject><subject>Training</subject><isbn>9781612842295</isbn><isbn>1612842291</isbn><isbn>1612842305</isbn><isbn>9781612842288</isbn><isbn>9781612842301</isbn><isbn>1612842283</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkM9KAzEYxCMiqLVP0EteYGu-ZJMmx7JULZR6Ua8lm_2ikf1Tkmyhb--CO5dhfodhGEJWwNYAzDzvj7uq2q05A1hLI4Xe8BvyCAq4Lrlg8pYszUbPmRt5T5Yp_bJJShkw5oF8bcc8dDYHRyPm0NuWXjAlbGkeYh6HFPKVdmjTGLHDPtMxhf6bujFebJ4YHTwN3TkOF2yo-7Ghp25o8IncedsmXM6-IJ8vu4_qrTi8v-6r7aFwULJc1GDQY-N5LTybxgNHJjVvlHQl1k4xjr72tqy1ZdpZB0o1HLwvvQMptRALsvrvDYh4OsfQ2Xg9zVeIP2yIVSs</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Onkaew, D.</creator><creator>Turior, R.</creator><creator>Uyyanonvara, B.</creator><creator>Akinori, N.</creator><creator>Sinthanayothin, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Automatic retinal vessel tortuosity measurement using curvature of improved chain code</title><author>Onkaew, D. ; Turior, R. ; Uyyanonvara, B. ; Akinori, N. ; Sinthanayothin, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c140t-b19efedf2b3f087212e0582d65c4ebc602efbfa4b8a08cac166d21ff4fc155833</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biomedical imaging</topic><topic>Blood vessels</topic><topic>Pixel</topic><topic>Retinal vessels</topic><topic>Retinopathy</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Onkaew, D.</creatorcontrib><creatorcontrib>Turior, R.</creatorcontrib><creatorcontrib>Uyyanonvara, B.</creatorcontrib><creatorcontrib>Akinori, N.</creatorcontrib><creatorcontrib>Sinthanayothin, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Onkaew, D.</au><au>Turior, R.</au><au>Uyyanonvara, B.</au><au>Akinori, N.</au><au>Sinthanayothin, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic retinal vessel tortuosity measurement using curvature of improved chain code</atitle><btitle>International Conference on Electrical, Control and Computer Engineering 2011 (InECCE)</btitle><stitle>INECCE</stitle><date>2011-06</date><risdate>2011</risdate><spage>183</spage><epage>186</epage><pages>183-186</pages><isbn>9781612842295</isbn><isbn>1612842291</isbn><eisbn>1612842305</eisbn><eisbn>9781612842288</eisbn><eisbn>9781612842301</eisbn><eisbn>1612842283</eisbn><abstract>Measurement of blood vessel tortuosity is a useful capability for automatic ophthalmological diagnostic tools. Screening of Retinopathy of Prematurity (ROP), a disease of eye that affects premature infants, for example, depends crucially on automatic tortuosity evaluation. Quite a few techniques for tortuosity measurement and classification have been proposed, but they do not always match the clinical concept of tortuosity. In this paper, we propose the alternative method of automatic tortuosity measurement for retinal blood vessels that uses the curvature calculated from improved chain code algorithm taking the number of inflection point into account. The tortuosity calculated from the proposed method is independent of the segmentation of vessel tree. Our algorithm can automatically classify the image as tortuous or non-tortuous. The test results are verified against two expert ophthalmologists. For an optimal set of training parameters the prediction is as high as 100% on 18 images.</abstract><pub>IEEE</pub><doi>10.1109/INECCE.2011.5953872</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781612842295 |
ispartof | International Conference on Electrical, Control and Computer Engineering 2011 (InECCE), 2011, p.183-186 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5953872 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biomedical imaging Blood vessels Pixel Retinal vessels Retinopathy Training |
title | Automatic retinal vessel tortuosity measurement using curvature of improved chain code |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20retinal%20vessel%20tortuosity%20measurement%20using%20curvature%20of%20improved%20chain%20code&rft.btitle=International%20Conference%20on%20Electrical,%20Control%20and%20Computer%20Engineering%202011%20(InECCE)&rft.au=Onkaew,%20D.&rft.date=2011-06&rft.spage=183&rft.epage=186&rft.pages=183-186&rft.isbn=9781612842295&rft.isbn_list=1612842291&rft_id=info:doi/10.1109/INECCE.2011.5953872&rft_dat=%3Cieee_6IE%3E5953872%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612842305&rft.eisbn_list=9781612842288&rft.eisbn_list=9781612842301&rft.eisbn_list=1612842283&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5953872&rfr_iscdi=true |