A role-based imitation algorithm for the optimisation in dynamic fitness landscapes
Organic Computing (OC) deals with technical systems consisting of a large number of system elements that can adapt their structure and behaviour to the operational environment in order to accomplish a given goal. In this context, self-adaptation is a key aspect that allows a system to perform in (po...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Cakar, E. Tomforde, S. Muller-Schloer, C. |
description | Organic Computing (OC) deals with technical systems consisting of a large number of system elements that can adapt their structure and behaviour to the operational environment in order to accomplish a given goal. In this context, self-adaptation is a key aspect that allows a system to perform in (possibly dynamic) environments without intervention from outside. Establishing self-adaptation in technical systems requires adequate optimisation algorithms that can find high-quality solutions in an acceptable period of time. In this paper, we present a new population-based optimisation algorithm (Role Based Imitation algorithm - RBI) that can be used to establish self-adaptation in OC systems with dynamic fitness landscapes. RBI proposes a novel role assignment strategy for exploring and exploiting agents to find high-quality solutions within a short period of time (i.e., with high convergence speed). We compare RBI with Differential Evolution (DE), Particle Swarm Optimisation (PSO), Evolutionary Algorithm (EA) and Simulated Annealing (SA) in static and dynamic fitness landscapes. Our experiments show that RBI performs better than the competing algorithms especially in noisy and highly dynamic environments. |
doi_str_mv | 10.1109/SIS.2011.5952571 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5952571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5952571</ieee_id><sourcerecordid>5952571</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a6eb93f5127ffbf02783417e867482c2bccefa942a598d8bf13a04b8769a6f4f3</originalsourceid><addsrcrecordid>eNpVkLlqAzEURRVCIMGZPpBGPzAT7UtpTBaDIcW4N08zT7HCLGakxn8fg93kNofLgVtcQl44azhn_q3dto1gnDfaa6EtvyOVt44bLpxiWvj7f12aR1Ll_MsuMcYbwZ5Iu6bLPGAdIGNP05gKlDRPFIafeUnlONI4L7Qckc6nctH5qtNE-_MEY-poTGXCnOkAU587OGF-Jg8RhozVjSuy_3jfb77q3ffndrPe1cmzUoPB4GXUXNgYQ2TCOqm4RWescqIToeswglcCtHe9C5FLYCo4azyYqKJckdfrbELEw2lJIyznw-0J-Qf6m1JS</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A role-based imitation algorithm for the optimisation in dynamic fitness landscapes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cakar, E. ; Tomforde, S. ; Muller-Schloer, C.</creator><creatorcontrib>Cakar, E. ; Tomforde, S. ; Muller-Schloer, C.</creatorcontrib><description>Organic Computing (OC) deals with technical systems consisting of a large number of system elements that can adapt their structure and behaviour to the operational environment in order to accomplish a given goal. In this context, self-adaptation is a key aspect that allows a system to perform in (possibly dynamic) environments without intervention from outside. Establishing self-adaptation in technical systems requires adequate optimisation algorithms that can find high-quality solutions in an acceptable period of time. In this paper, we present a new population-based optimisation algorithm (Role Based Imitation algorithm - RBI) that can be used to establish self-adaptation in OC systems with dynamic fitness landscapes. RBI proposes a novel role assignment strategy for exploring and exploiting agents to find high-quality solutions within a short period of time (i.e., with high convergence speed). We compare RBI with Differential Evolution (DE), Particle Swarm Optimisation (PSO), Evolutionary Algorithm (EA) and Simulated Annealing (SA) in static and dynamic fitness landscapes. Our experiments show that RBI performs better than the competing algorithms especially in noisy and highly dynamic environments.</description><identifier>ISBN: 9781612840536</identifier><identifier>ISBN: 1612840531</identifier><identifier>EISBN: 9781612840529</identifier><identifier>EISBN: 1612840515</identifier><identifier>EISBN: 9781612840512</identifier><identifier>EISBN: 1612840523</identifier><identifier>DOI: 10.1109/SIS.2011.5952571</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; Convergence ; Heuristic algorithms ; Machine learning algorithms ; Noise measurement ; Organic Computing ; population-based optimisation ; Simulated annealing ; static and dynamic fitness landscapes</subject><ispartof>2011 IEEE Symposium on Swarm Intelligence, 2011, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5952571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5952571$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cakar, E.</creatorcontrib><creatorcontrib>Tomforde, S.</creatorcontrib><creatorcontrib>Muller-Schloer, C.</creatorcontrib><title>A role-based imitation algorithm for the optimisation in dynamic fitness landscapes</title><title>2011 IEEE Symposium on Swarm Intelligence</title><addtitle>SIS</addtitle><description>Organic Computing (OC) deals with technical systems consisting of a large number of system elements that can adapt their structure and behaviour to the operational environment in order to accomplish a given goal. In this context, self-adaptation is a key aspect that allows a system to perform in (possibly dynamic) environments without intervention from outside. Establishing self-adaptation in technical systems requires adequate optimisation algorithms that can find high-quality solutions in an acceptable period of time. In this paper, we present a new population-based optimisation algorithm (Role Based Imitation algorithm - RBI) that can be used to establish self-adaptation in OC systems with dynamic fitness landscapes. RBI proposes a novel role assignment strategy for exploring and exploiting agents to find high-quality solutions within a short period of time (i.e., with high convergence speed). We compare RBI with Differential Evolution (DE), Particle Swarm Optimisation (PSO), Evolutionary Algorithm (EA) and Simulated Annealing (SA) in static and dynamic fitness landscapes. Our experiments show that RBI performs better than the competing algorithms especially in noisy and highly dynamic environments.</description><subject>Benchmark testing</subject><subject>Convergence</subject><subject>Heuristic algorithms</subject><subject>Machine learning algorithms</subject><subject>Noise measurement</subject><subject>Organic Computing</subject><subject>population-based optimisation</subject><subject>Simulated annealing</subject><subject>static and dynamic fitness landscapes</subject><isbn>9781612840536</isbn><isbn>1612840531</isbn><isbn>9781612840529</isbn><isbn>1612840515</isbn><isbn>9781612840512</isbn><isbn>1612840523</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkLlqAzEURRVCIMGZPpBGPzAT7UtpTBaDIcW4N08zT7HCLGakxn8fg93kNofLgVtcQl44azhn_q3dto1gnDfaa6EtvyOVt44bLpxiWvj7f12aR1Ll_MsuMcYbwZ5Iu6bLPGAdIGNP05gKlDRPFIafeUnlONI4L7Qckc6nctH5qtNE-_MEY-poTGXCnOkAU587OGF-Jg8RhozVjSuy_3jfb77q3ffndrPe1cmzUoPB4GXUXNgYQ2TCOqm4RWescqIToeswglcCtHe9C5FLYCo4azyYqKJckdfrbELEw2lJIyznw-0J-Qf6m1JS</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Cakar, E.</creator><creator>Tomforde, S.</creator><creator>Muller-Schloer, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201104</creationdate><title>A role-based imitation algorithm for the optimisation in dynamic fitness landscapes</title><author>Cakar, E. ; Tomforde, S. ; Muller-Schloer, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a6eb93f5127ffbf02783417e867482c2bccefa942a598d8bf13a04b8769a6f4f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Benchmark testing</topic><topic>Convergence</topic><topic>Heuristic algorithms</topic><topic>Machine learning algorithms</topic><topic>Noise measurement</topic><topic>Organic Computing</topic><topic>population-based optimisation</topic><topic>Simulated annealing</topic><topic>static and dynamic fitness landscapes</topic><toplevel>online_resources</toplevel><creatorcontrib>Cakar, E.</creatorcontrib><creatorcontrib>Tomforde, S.</creatorcontrib><creatorcontrib>Muller-Schloer, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cakar, E.</au><au>Tomforde, S.</au><au>Muller-Schloer, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A role-based imitation algorithm for the optimisation in dynamic fitness landscapes</atitle><btitle>2011 IEEE Symposium on Swarm Intelligence</btitle><stitle>SIS</stitle><date>2011-04</date><risdate>2011</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><isbn>9781612840536</isbn><isbn>1612840531</isbn><eisbn>9781612840529</eisbn><eisbn>1612840515</eisbn><eisbn>9781612840512</eisbn><eisbn>1612840523</eisbn><abstract>Organic Computing (OC) deals with technical systems consisting of a large number of system elements that can adapt their structure and behaviour to the operational environment in order to accomplish a given goal. In this context, self-adaptation is a key aspect that allows a system to perform in (possibly dynamic) environments without intervention from outside. Establishing self-adaptation in technical systems requires adequate optimisation algorithms that can find high-quality solutions in an acceptable period of time. In this paper, we present a new population-based optimisation algorithm (Role Based Imitation algorithm - RBI) that can be used to establish self-adaptation in OC systems with dynamic fitness landscapes. RBI proposes a novel role assignment strategy for exploring and exploiting agents to find high-quality solutions within a short period of time (i.e., with high convergence speed). We compare RBI with Differential Evolution (DE), Particle Swarm Optimisation (PSO), Evolutionary Algorithm (EA) and Simulated Annealing (SA) in static and dynamic fitness landscapes. Our experiments show that RBI performs better than the competing algorithms especially in noisy and highly dynamic environments.</abstract><pub>IEEE</pub><doi>10.1109/SIS.2011.5952571</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781612840536 |
ispartof | 2011 IEEE Symposium on Swarm Intelligence, 2011, p.1-8 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5952571 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Benchmark testing Convergence Heuristic algorithms Machine learning algorithms Noise measurement Organic Computing population-based optimisation Simulated annealing static and dynamic fitness landscapes |
title | A role-based imitation algorithm for the optimisation in dynamic fitness landscapes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20role-based%20imitation%20algorithm%20for%20the%20optimisation%20in%20dynamic%20fitness%20landscapes&rft.btitle=2011%20IEEE%20Symposium%20on%20Swarm%20Intelligence&rft.au=Cakar,%20E.&rft.date=2011-04&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.isbn=9781612840536&rft.isbn_list=1612840531&rft_id=info:doi/10.1109/SIS.2011.5952571&rft_dat=%3Cieee_6IE%3E5952571%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612840529&rft.eisbn_list=1612840515&rft.eisbn_list=9781612840512&rft.eisbn_list=1612840523&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5952571&rfr_iscdi=true |