A role-based imitation algorithm for the optimisation in dynamic fitness landscapes

Organic Computing (OC) deals with technical systems consisting of a large number of system elements that can adapt their structure and behaviour to the operational environment in order to accomplish a given goal. In this context, self-adaptation is a key aspect that allows a system to perform in (po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cakar, E., Tomforde, S., Muller-Schloer, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Cakar, E.
Tomforde, S.
Muller-Schloer, C.
description Organic Computing (OC) deals with technical systems consisting of a large number of system elements that can adapt their structure and behaviour to the operational environment in order to accomplish a given goal. In this context, self-adaptation is a key aspect that allows a system to perform in (possibly dynamic) environments without intervention from outside. Establishing self-adaptation in technical systems requires adequate optimisation algorithms that can find high-quality solutions in an acceptable period of time. In this paper, we present a new population-based optimisation algorithm (Role Based Imitation algorithm - RBI) that can be used to establish self-adaptation in OC systems with dynamic fitness landscapes. RBI proposes a novel role assignment strategy for exploring and exploiting agents to find high-quality solutions within a short period of time (i.e., with high convergence speed). We compare RBI with Differential Evolution (DE), Particle Swarm Optimisation (PSO), Evolutionary Algorithm (EA) and Simulated Annealing (SA) in static and dynamic fitness landscapes. Our experiments show that RBI performs better than the competing algorithms especially in noisy and highly dynamic environments.
doi_str_mv 10.1109/SIS.2011.5952571
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5952571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5952571</ieee_id><sourcerecordid>5952571</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a6eb93f5127ffbf02783417e867482c2bccefa942a598d8bf13a04b8769a6f4f3</originalsourceid><addsrcrecordid>eNpVkLlqAzEURRVCIMGZPpBGPzAT7UtpTBaDIcW4N08zT7HCLGakxn8fg93kNofLgVtcQl44azhn_q3dto1gnDfaa6EtvyOVt44bLpxiWvj7f12aR1Ll_MsuMcYbwZ5Iu6bLPGAdIGNP05gKlDRPFIafeUnlONI4L7Qckc6nctH5qtNE-_MEY-poTGXCnOkAU587OGF-Jg8RhozVjSuy_3jfb77q3ffndrPe1cmzUoPB4GXUXNgYQ2TCOqm4RWescqIToeswglcCtHe9C5FLYCo4azyYqKJckdfrbELEw2lJIyznw-0J-Qf6m1JS</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A role-based imitation algorithm for the optimisation in dynamic fitness landscapes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cakar, E. ; Tomforde, S. ; Muller-Schloer, C.</creator><creatorcontrib>Cakar, E. ; Tomforde, S. ; Muller-Schloer, C.</creatorcontrib><description>Organic Computing (OC) deals with technical systems consisting of a large number of system elements that can adapt their structure and behaviour to the operational environment in order to accomplish a given goal. In this context, self-adaptation is a key aspect that allows a system to perform in (possibly dynamic) environments without intervention from outside. Establishing self-adaptation in technical systems requires adequate optimisation algorithms that can find high-quality solutions in an acceptable period of time. In this paper, we present a new population-based optimisation algorithm (Role Based Imitation algorithm - RBI) that can be used to establish self-adaptation in OC systems with dynamic fitness landscapes. RBI proposes a novel role assignment strategy for exploring and exploiting agents to find high-quality solutions within a short period of time (i.e., with high convergence speed). We compare RBI with Differential Evolution (DE), Particle Swarm Optimisation (PSO), Evolutionary Algorithm (EA) and Simulated Annealing (SA) in static and dynamic fitness landscapes. Our experiments show that RBI performs better than the competing algorithms especially in noisy and highly dynamic environments.</description><identifier>ISBN: 9781612840536</identifier><identifier>ISBN: 1612840531</identifier><identifier>EISBN: 9781612840529</identifier><identifier>EISBN: 1612840515</identifier><identifier>EISBN: 9781612840512</identifier><identifier>EISBN: 1612840523</identifier><identifier>DOI: 10.1109/SIS.2011.5952571</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; Convergence ; Heuristic algorithms ; Machine learning algorithms ; Noise measurement ; Organic Computing ; population-based optimisation ; Simulated annealing ; static and dynamic fitness landscapes</subject><ispartof>2011 IEEE Symposium on Swarm Intelligence, 2011, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5952571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5952571$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cakar, E.</creatorcontrib><creatorcontrib>Tomforde, S.</creatorcontrib><creatorcontrib>Muller-Schloer, C.</creatorcontrib><title>A role-based imitation algorithm for the optimisation in dynamic fitness landscapes</title><title>2011 IEEE Symposium on Swarm Intelligence</title><addtitle>SIS</addtitle><description>Organic Computing (OC) deals with technical systems consisting of a large number of system elements that can adapt their structure and behaviour to the operational environment in order to accomplish a given goal. In this context, self-adaptation is a key aspect that allows a system to perform in (possibly dynamic) environments without intervention from outside. Establishing self-adaptation in technical systems requires adequate optimisation algorithms that can find high-quality solutions in an acceptable period of time. In this paper, we present a new population-based optimisation algorithm (Role Based Imitation algorithm - RBI) that can be used to establish self-adaptation in OC systems with dynamic fitness landscapes. RBI proposes a novel role assignment strategy for exploring and exploiting agents to find high-quality solutions within a short period of time (i.e., with high convergence speed). We compare RBI with Differential Evolution (DE), Particle Swarm Optimisation (PSO), Evolutionary Algorithm (EA) and Simulated Annealing (SA) in static and dynamic fitness landscapes. Our experiments show that RBI performs better than the competing algorithms especially in noisy and highly dynamic environments.</description><subject>Benchmark testing</subject><subject>Convergence</subject><subject>Heuristic algorithms</subject><subject>Machine learning algorithms</subject><subject>Noise measurement</subject><subject>Organic Computing</subject><subject>population-based optimisation</subject><subject>Simulated annealing</subject><subject>static and dynamic fitness landscapes</subject><isbn>9781612840536</isbn><isbn>1612840531</isbn><isbn>9781612840529</isbn><isbn>1612840515</isbn><isbn>9781612840512</isbn><isbn>1612840523</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkLlqAzEURRVCIMGZPpBGPzAT7UtpTBaDIcW4N08zT7HCLGakxn8fg93kNofLgVtcQl44azhn_q3dto1gnDfaa6EtvyOVt44bLpxiWvj7f12aR1Ll_MsuMcYbwZ5Iu6bLPGAdIGNP05gKlDRPFIafeUnlONI4L7Qckc6nctH5qtNE-_MEY-poTGXCnOkAU587OGF-Jg8RhozVjSuy_3jfb77q3ffndrPe1cmzUoPB4GXUXNgYQ2TCOqm4RWescqIToeswglcCtHe9C5FLYCo4azyYqKJckdfrbELEw2lJIyznw-0J-Qf6m1JS</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Cakar, E.</creator><creator>Tomforde, S.</creator><creator>Muller-Schloer, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201104</creationdate><title>A role-based imitation algorithm for the optimisation in dynamic fitness landscapes</title><author>Cakar, E. ; Tomforde, S. ; Muller-Schloer, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a6eb93f5127ffbf02783417e867482c2bccefa942a598d8bf13a04b8769a6f4f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Benchmark testing</topic><topic>Convergence</topic><topic>Heuristic algorithms</topic><topic>Machine learning algorithms</topic><topic>Noise measurement</topic><topic>Organic Computing</topic><topic>population-based optimisation</topic><topic>Simulated annealing</topic><topic>static and dynamic fitness landscapes</topic><toplevel>online_resources</toplevel><creatorcontrib>Cakar, E.</creatorcontrib><creatorcontrib>Tomforde, S.</creatorcontrib><creatorcontrib>Muller-Schloer, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cakar, E.</au><au>Tomforde, S.</au><au>Muller-Schloer, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A role-based imitation algorithm for the optimisation in dynamic fitness landscapes</atitle><btitle>2011 IEEE Symposium on Swarm Intelligence</btitle><stitle>SIS</stitle><date>2011-04</date><risdate>2011</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><isbn>9781612840536</isbn><isbn>1612840531</isbn><eisbn>9781612840529</eisbn><eisbn>1612840515</eisbn><eisbn>9781612840512</eisbn><eisbn>1612840523</eisbn><abstract>Organic Computing (OC) deals with technical systems consisting of a large number of system elements that can adapt their structure and behaviour to the operational environment in order to accomplish a given goal. In this context, self-adaptation is a key aspect that allows a system to perform in (possibly dynamic) environments without intervention from outside. Establishing self-adaptation in technical systems requires adequate optimisation algorithms that can find high-quality solutions in an acceptable period of time. In this paper, we present a new population-based optimisation algorithm (Role Based Imitation algorithm - RBI) that can be used to establish self-adaptation in OC systems with dynamic fitness landscapes. RBI proposes a novel role assignment strategy for exploring and exploiting agents to find high-quality solutions within a short period of time (i.e., with high convergence speed). We compare RBI with Differential Evolution (DE), Particle Swarm Optimisation (PSO), Evolutionary Algorithm (EA) and Simulated Annealing (SA) in static and dynamic fitness landscapes. Our experiments show that RBI performs better than the competing algorithms especially in noisy and highly dynamic environments.</abstract><pub>IEEE</pub><doi>10.1109/SIS.2011.5952571</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781612840536
ispartof 2011 IEEE Symposium on Swarm Intelligence, 2011, p.1-8
issn
language eng
recordid cdi_ieee_primary_5952571
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Benchmark testing
Convergence
Heuristic algorithms
Machine learning algorithms
Noise measurement
Organic Computing
population-based optimisation
Simulated annealing
static and dynamic fitness landscapes
title A role-based imitation algorithm for the optimisation in dynamic fitness landscapes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20role-based%20imitation%20algorithm%20for%20the%20optimisation%20in%20dynamic%20fitness%20landscapes&rft.btitle=2011%20IEEE%20Symposium%20on%20Swarm%20Intelligence&rft.au=Cakar,%20E.&rft.date=2011-04&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.isbn=9781612840536&rft.isbn_list=1612840531&rft_id=info:doi/10.1109/SIS.2011.5952571&rft_dat=%3Cieee_6IE%3E5952571%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612840529&rft.eisbn_list=1612840515&rft.eisbn_list=9781612840512&rft.eisbn_list=1612840523&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5952571&rfr_iscdi=true