Evolutionary algorithms and Particle Swarm Optimization for artificial language evolution
This paper reports upon two adaptive approaches for deriving words in an artificial language simulation. The efficacy of a Particle Swarm Optimization (PSO) method versus an Artificial Evolution (AE) method was examined for the purpose of adapting communication between agents. The objective of the s...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2708 |
---|---|
container_issue | |
container_start_page | 2701 |
container_title | |
container_volume | |
creator | de Bruyn, Kobus Nitschke, Geoff van Heerden, Willem |
description | This paper reports upon two adaptive approaches for deriving words in an artificial language simulation. The efficacy of a Particle Swarm Optimization (PSO) method versus an Artificial Evolution (AE) method was examined for the purpose of adapting communication between agents. The objective of the study was for agents to derive a common (shared) lexicon for talking about food resources in the simulation environment. In the simulation, communication was essential for agent survival and as such facilitated lexicon adaptation. Results indicated that PSO was effective at adapting agents to quickly converge to a common lexicon, where, on average, one word for each food type was derived. AE required more method iterations to converge to a common lexicon that contained, on average, multiple words for each food type. However, there was greater word diversity in the lexicon converged upon by AE evolved agents, compared to that converged upon by PSO adapted agents. |
doi_str_mv | 10.1109/CEC.2011.5949956 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5949956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5949956</ieee_id><sourcerecordid>5949956</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1d121967c9a57af15cf89a9a02eeec374d001c6901414c630fdb8b3c477f9afa3</originalsourceid><addsrcrecordid>eNo1kE1Lw0AQhtcvsNbeBS_7B1J3sl-Zo4T6AYUKKuipTDe7cSVpSpIq-utNsZ3LHJ73fWCGsSsQUwCBN_ksn6YCYKpRIWpzxCZoM1CpUjaTWh2zEaCCRIjUnLCLA1DidAAiw8Ta7O2cTbruUwxjDEotRux99tVU2z42a2p_OFVl08b-o-44rQv-RG0fXeX58ze1NV9s-ljHX9qleWhavsMhukgVr2hdbqn03B98l-wsUNX5yX6P2evd7CV_SOaL-8f8dp5EsLpPoIAU0FiHpC0F0C5kSEgi9d47aVUhBDiDAhQoZ6QIxSpbSaesDUiB5Jhd_3vjUFhu2lgPlyz3X5J_9mdYjw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evolutionary algorithms and Particle Swarm Optimization for artificial language evolution</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>de Bruyn, Kobus ; Nitschke, Geoff ; van Heerden, Willem</creator><creatorcontrib>de Bruyn, Kobus ; Nitschke, Geoff ; van Heerden, Willem</creatorcontrib><description>This paper reports upon two adaptive approaches for deriving words in an artificial language simulation. The efficacy of a Particle Swarm Optimization (PSO) method versus an Artificial Evolution (AE) method was examined for the purpose of adapting communication between agents. The objective of the study was for agents to derive a common (shared) lexicon for talking about food resources in the simulation environment. In the simulation, communication was essential for agent survival and as such facilitated lexicon adaptation. Results indicated that PSO was effective at adapting agents to quickly converge to a common lexicon, where, on average, one word for each food type was derived. AE required more method iterations to converge to a common lexicon that contained, on average, multiple words for each food type. However, there was greater word diversity in the lexicon converged upon by AE evolved agents, compared to that converged upon by PSO adapted agents.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424478340</identifier><identifier>ISBN: 9781424478347</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 9781424478354</identifier><identifier>EISBN: 1424478332</identifier><identifier>EISBN: 9781424478330</identifier><identifier>EISBN: 1424478359</identifier><identifier>DOI: 10.1109/CEC.2011.5949956</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Artificial Language ; Artificial Life ; Convergence ; Evolution (biology) ; Evolutionary Algorithm ; Games ; Green products ; Particle swarm optimization</subject><ispartof>2011 IEEE Congress of Evolutionary Computation (CEC), 2011, p.2701-2708</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5949956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,2058,27925,54758,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5949956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de Bruyn, Kobus</creatorcontrib><creatorcontrib>Nitschke, Geoff</creatorcontrib><creatorcontrib>van Heerden, Willem</creatorcontrib><title>Evolutionary algorithms and Particle Swarm Optimization for artificial language evolution</title><title>2011 IEEE Congress of Evolutionary Computation (CEC)</title><addtitle>CEC</addtitle><description>This paper reports upon two adaptive approaches for deriving words in an artificial language simulation. The efficacy of a Particle Swarm Optimization (PSO) method versus an Artificial Evolution (AE) method was examined for the purpose of adapting communication between agents. The objective of the study was for agents to derive a common (shared) lexicon for talking about food resources in the simulation environment. In the simulation, communication was essential for agent survival and as such facilitated lexicon adaptation. Results indicated that PSO was effective at adapting agents to quickly converge to a common lexicon, where, on average, one word for each food type was derived. AE required more method iterations to converge to a common lexicon that contained, on average, multiple words for each food type. However, there was greater word diversity in the lexicon converged upon by AE evolved agents, compared to that converged upon by PSO adapted agents.</description><subject>Adaptation models</subject><subject>Artificial Language</subject><subject>Artificial Life</subject><subject>Convergence</subject><subject>Evolution (biology)</subject><subject>Evolutionary Algorithm</subject><subject>Games</subject><subject>Green products</subject><subject>Particle swarm optimization</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424478340</isbn><isbn>9781424478347</isbn><isbn>9781424478354</isbn><isbn>1424478332</isbn><isbn>9781424478330</isbn><isbn>1424478359</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE1Lw0AQhtcvsNbeBS_7B1J3sl-Zo4T6AYUKKuipTDe7cSVpSpIq-utNsZ3LHJ73fWCGsSsQUwCBN_ksn6YCYKpRIWpzxCZoM1CpUjaTWh2zEaCCRIjUnLCLA1DidAAiw8Ta7O2cTbruUwxjDEotRux99tVU2z42a2p_OFVl08b-o-44rQv-RG0fXeX58ze1NV9s-ljHX9qleWhavsMhukgVr2hdbqn03B98l-wsUNX5yX6P2evd7CV_SOaL-8f8dp5EsLpPoIAU0FiHpC0F0C5kSEgi9d47aVUhBDiDAhQoZ6QIxSpbSaesDUiB5Jhd_3vjUFhu2lgPlyz3X5J_9mdYjw</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>de Bruyn, Kobus</creator><creator>Nitschke, Geoff</creator><creator>van Heerden, Willem</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Evolutionary algorithms and Particle Swarm Optimization for artificial language evolution</title><author>de Bruyn, Kobus ; Nitschke, Geoff ; van Heerden, Willem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1d121967c9a57af15cf89a9a02eeec374d001c6901414c630fdb8b3c477f9afa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation models</topic><topic>Artificial Language</topic><topic>Artificial Life</topic><topic>Convergence</topic><topic>Evolution (biology)</topic><topic>Evolutionary Algorithm</topic><topic>Games</topic><topic>Green products</topic><topic>Particle swarm optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Bruyn, Kobus</creatorcontrib><creatorcontrib>Nitschke, Geoff</creatorcontrib><creatorcontrib>van Heerden, Willem</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Bruyn, Kobus</au><au>Nitschke, Geoff</au><au>van Heerden, Willem</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evolutionary algorithms and Particle Swarm Optimization for artificial language evolution</atitle><btitle>2011 IEEE Congress of Evolutionary Computation (CEC)</btitle><stitle>CEC</stitle><date>2011-06</date><risdate>2011</risdate><spage>2701</spage><epage>2708</epage><pages>2701-2708</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424478340</isbn><isbn>9781424478347</isbn><eisbn>9781424478354</eisbn><eisbn>1424478332</eisbn><eisbn>9781424478330</eisbn><eisbn>1424478359</eisbn><abstract>This paper reports upon two adaptive approaches for deriving words in an artificial language simulation. The efficacy of a Particle Swarm Optimization (PSO) method versus an Artificial Evolution (AE) method was examined for the purpose of adapting communication between agents. The objective of the study was for agents to derive a common (shared) lexicon for talking about food resources in the simulation environment. In the simulation, communication was essential for agent survival and as such facilitated lexicon adaptation. Results indicated that PSO was effective at adapting agents to quickly converge to a common lexicon, where, on average, one word for each food type was derived. AE required more method iterations to converge to a common lexicon that contained, on average, multiple words for each food type. However, there was greater word diversity in the lexicon converged upon by AE evolved agents, compared to that converged upon by PSO adapted agents.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2011.5949956</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2011 IEEE Congress of Evolutionary Computation (CEC), 2011, p.2701-2708 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_5949956 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptation models Artificial Language Artificial Life Convergence Evolution (biology) Evolutionary Algorithm Games Green products Particle swarm optimization |
title | Evolutionary algorithms and Particle Swarm Optimization for artificial language evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evolutionary%20algorithms%20and%20Particle%20Swarm%20Optimization%20for%20artificial%20language%20evolution&rft.btitle=2011%20IEEE%20Congress%20of%20Evolutionary%20Computation%20(CEC)&rft.au=de%20Bruyn,%20Kobus&rft.date=2011-06&rft.spage=2701&rft.epage=2708&rft.pages=2701-2708&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424478340&rft.isbn_list=9781424478347&rft_id=info:doi/10.1109/CEC.2011.5949956&rft_dat=%3Cieee_6IE%3E5949956%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424478354&rft.eisbn_list=1424478332&rft.eisbn_list=9781424478330&rft.eisbn_list=1424478359&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5949956&rfr_iscdi=true |