Evolutionary algorithms and Particle Swarm Optimization for artificial language evolution

This paper reports upon two adaptive approaches for deriving words in an artificial language simulation. The efficacy of a Particle Swarm Optimization (PSO) method versus an Artificial Evolution (AE) method was examined for the purpose of adapting communication between agents. The objective of the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: de Bruyn, Kobus, Nitschke, Geoff, van Heerden, Willem
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2708
container_issue
container_start_page 2701
container_title
container_volume
creator de Bruyn, Kobus
Nitschke, Geoff
van Heerden, Willem
description This paper reports upon two adaptive approaches for deriving words in an artificial language simulation. The efficacy of a Particle Swarm Optimization (PSO) method versus an Artificial Evolution (AE) method was examined for the purpose of adapting communication between agents. The objective of the study was for agents to derive a common (shared) lexicon for talking about food resources in the simulation environment. In the simulation, communication was essential for agent survival and as such facilitated lexicon adaptation. Results indicated that PSO was effective at adapting agents to quickly converge to a common lexicon, where, on average, one word for each food type was derived. AE required more method iterations to converge to a common lexicon that contained, on average, multiple words for each food type. However, there was greater word diversity in the lexicon converged upon by AE evolved agents, compared to that converged upon by PSO adapted agents.
doi_str_mv 10.1109/CEC.2011.5949956
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5949956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5949956</ieee_id><sourcerecordid>5949956</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1d121967c9a57af15cf89a9a02eeec374d001c6901414c630fdb8b3c477f9afa3</originalsourceid><addsrcrecordid>eNo1kE1Lw0AQhtcvsNbeBS_7B1J3sl-Zo4T6AYUKKuipTDe7cSVpSpIq-utNsZ3LHJ73fWCGsSsQUwCBN_ksn6YCYKpRIWpzxCZoM1CpUjaTWh2zEaCCRIjUnLCLA1DidAAiw8Ta7O2cTbruUwxjDEotRux99tVU2z42a2p_OFVl08b-o-44rQv-RG0fXeX58ze1NV9s-ljHX9qleWhavsMhukgVr2hdbqn03B98l-wsUNX5yX6P2evd7CV_SOaL-8f8dp5EsLpPoIAU0FiHpC0F0C5kSEgi9d47aVUhBDiDAhQoZ6QIxSpbSaesDUiB5Jhd_3vjUFhu2lgPlyz3X5J_9mdYjw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evolutionary algorithms and Particle Swarm Optimization for artificial language evolution</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>de Bruyn, Kobus ; Nitschke, Geoff ; van Heerden, Willem</creator><creatorcontrib>de Bruyn, Kobus ; Nitschke, Geoff ; van Heerden, Willem</creatorcontrib><description>This paper reports upon two adaptive approaches for deriving words in an artificial language simulation. The efficacy of a Particle Swarm Optimization (PSO) method versus an Artificial Evolution (AE) method was examined for the purpose of adapting communication between agents. The objective of the study was for agents to derive a common (shared) lexicon for talking about food resources in the simulation environment. In the simulation, communication was essential for agent survival and as such facilitated lexicon adaptation. Results indicated that PSO was effective at adapting agents to quickly converge to a common lexicon, where, on average, one word for each food type was derived. AE required more method iterations to converge to a common lexicon that contained, on average, multiple words for each food type. However, there was greater word diversity in the lexicon converged upon by AE evolved agents, compared to that converged upon by PSO adapted agents.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424478340</identifier><identifier>ISBN: 9781424478347</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 9781424478354</identifier><identifier>EISBN: 1424478332</identifier><identifier>EISBN: 9781424478330</identifier><identifier>EISBN: 1424478359</identifier><identifier>DOI: 10.1109/CEC.2011.5949956</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Artificial Language ; Artificial Life ; Convergence ; Evolution (biology) ; Evolutionary Algorithm ; Games ; Green products ; Particle swarm optimization</subject><ispartof>2011 IEEE Congress of Evolutionary Computation (CEC), 2011, p.2701-2708</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5949956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,2058,27925,54758,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5949956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de Bruyn, Kobus</creatorcontrib><creatorcontrib>Nitschke, Geoff</creatorcontrib><creatorcontrib>van Heerden, Willem</creatorcontrib><title>Evolutionary algorithms and Particle Swarm Optimization for artificial language evolution</title><title>2011 IEEE Congress of Evolutionary Computation (CEC)</title><addtitle>CEC</addtitle><description>This paper reports upon two adaptive approaches for deriving words in an artificial language simulation. The efficacy of a Particle Swarm Optimization (PSO) method versus an Artificial Evolution (AE) method was examined for the purpose of adapting communication between agents. The objective of the study was for agents to derive a common (shared) lexicon for talking about food resources in the simulation environment. In the simulation, communication was essential for agent survival and as such facilitated lexicon adaptation. Results indicated that PSO was effective at adapting agents to quickly converge to a common lexicon, where, on average, one word for each food type was derived. AE required more method iterations to converge to a common lexicon that contained, on average, multiple words for each food type. However, there was greater word diversity in the lexicon converged upon by AE evolved agents, compared to that converged upon by PSO adapted agents.</description><subject>Adaptation models</subject><subject>Artificial Language</subject><subject>Artificial Life</subject><subject>Convergence</subject><subject>Evolution (biology)</subject><subject>Evolutionary Algorithm</subject><subject>Games</subject><subject>Green products</subject><subject>Particle swarm optimization</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424478340</isbn><isbn>9781424478347</isbn><isbn>9781424478354</isbn><isbn>1424478332</isbn><isbn>9781424478330</isbn><isbn>1424478359</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE1Lw0AQhtcvsNbeBS_7B1J3sl-Zo4T6AYUKKuipTDe7cSVpSpIq-utNsZ3LHJ73fWCGsSsQUwCBN_ksn6YCYKpRIWpzxCZoM1CpUjaTWh2zEaCCRIjUnLCLA1DidAAiw8Ta7O2cTbruUwxjDEotRux99tVU2z42a2p_OFVl08b-o-44rQv-RG0fXeX58ze1NV9s-ljHX9qleWhavsMhukgVr2hdbqn03B98l-wsUNX5yX6P2evd7CV_SOaL-8f8dp5EsLpPoIAU0FiHpC0F0C5kSEgi9d47aVUhBDiDAhQoZ6QIxSpbSaesDUiB5Jhd_3vjUFhu2lgPlyz3X5J_9mdYjw</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>de Bruyn, Kobus</creator><creator>Nitschke, Geoff</creator><creator>van Heerden, Willem</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Evolutionary algorithms and Particle Swarm Optimization for artificial language evolution</title><author>de Bruyn, Kobus ; Nitschke, Geoff ; van Heerden, Willem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1d121967c9a57af15cf89a9a02eeec374d001c6901414c630fdb8b3c477f9afa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation models</topic><topic>Artificial Language</topic><topic>Artificial Life</topic><topic>Convergence</topic><topic>Evolution (biology)</topic><topic>Evolutionary Algorithm</topic><topic>Games</topic><topic>Green products</topic><topic>Particle swarm optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Bruyn, Kobus</creatorcontrib><creatorcontrib>Nitschke, Geoff</creatorcontrib><creatorcontrib>van Heerden, Willem</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Bruyn, Kobus</au><au>Nitschke, Geoff</au><au>van Heerden, Willem</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evolutionary algorithms and Particle Swarm Optimization for artificial language evolution</atitle><btitle>2011 IEEE Congress of Evolutionary Computation (CEC)</btitle><stitle>CEC</stitle><date>2011-06</date><risdate>2011</risdate><spage>2701</spage><epage>2708</epage><pages>2701-2708</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424478340</isbn><isbn>9781424478347</isbn><eisbn>9781424478354</eisbn><eisbn>1424478332</eisbn><eisbn>9781424478330</eisbn><eisbn>1424478359</eisbn><abstract>This paper reports upon two adaptive approaches for deriving words in an artificial language simulation. The efficacy of a Particle Swarm Optimization (PSO) method versus an Artificial Evolution (AE) method was examined for the purpose of adapting communication between agents. The objective of the study was for agents to derive a common (shared) lexicon for talking about food resources in the simulation environment. In the simulation, communication was essential for agent survival and as such facilitated lexicon adaptation. Results indicated that PSO was effective at adapting agents to quickly converge to a common lexicon, where, on average, one word for each food type was derived. AE required more method iterations to converge to a common lexicon that contained, on average, multiple words for each food type. However, there was greater word diversity in the lexicon converged upon by AE evolved agents, compared to that converged upon by PSO adapted agents.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2011.5949956</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2011 IEEE Congress of Evolutionary Computation (CEC), 2011, p.2701-2708
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_5949956
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation models
Artificial Language
Artificial Life
Convergence
Evolution (biology)
Evolutionary Algorithm
Games
Green products
Particle swarm optimization
title Evolutionary algorithms and Particle Swarm Optimization for artificial language evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evolutionary%20algorithms%20and%20Particle%20Swarm%20Optimization%20for%20artificial%20language%20evolution&rft.btitle=2011%20IEEE%20Congress%20of%20Evolutionary%20Computation%20(CEC)&rft.au=de%20Bruyn,%20Kobus&rft.date=2011-06&rft.spage=2701&rft.epage=2708&rft.pages=2701-2708&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424478340&rft.isbn_list=9781424478347&rft_id=info:doi/10.1109/CEC.2011.5949956&rft_dat=%3Cieee_6IE%3E5949956%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424478354&rft.eisbn_list=1424478332&rft.eisbn_list=9781424478330&rft.eisbn_list=1424478359&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5949956&rfr_iscdi=true