A new framework taking account of multi-funnel functions for Real-coded Genetic Algorithms

In this paper, we propose a new framework taking account of multi-funnel functions for Real-coded Genetic Algorithms (RCGAs). In the continuous function optimization, Evolutionary Algorithms (EAs) are one of the most effective optimization methods. However, most conventional EAs, such as RCGAs and C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Uemura, Kento, Kinoshita, Shun-ichi, Nagata, Yuichi, Kobayashi, Shigenobu, Ono, Isao
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2098
container_issue
container_start_page 2091
container_title
container_volume
creator Uemura, Kento
Kinoshita, Shun-ichi
Nagata, Yuichi
Kobayashi, Shigenobu
Ono, Isao
description In this paper, we propose a new framework taking account of multi-funnel functions for Real-coded Genetic Algorithms (RCGAs). In the continuous function optimization, Evolutionary Algorithms (EAs) are one of the most effective optimization methods. However, most conventional EAs, such as RCGAs and CMA-ES, work efficiently on functions with big-valley landscape and they deteriorate on the multi-funnel functions. Innately Split Model (ISM) has been proposed as a framework of GAs for multi-funnel functions and outperforms conventional GAs on this kind of functions. However, ISM is considered to have two problems in terms of efficiency of the search and difficulty of parameter settings. Our framework repeats a search by RCGAs as ISM does and has two effective mechanisms to remedy the two problems of ISM. We conducted experiments on benchmark functions with multi-funnel and big valley landscapes and our framework outperformed conventional EAs, Multi-start RCGA (MS-RCGA), Multi-start CMA-ES (MS CMA-ES) and ISM, on the multi-funnel functions. Our frame work achieved as good performance as MS-RCGA and MS CMA-ES on the big-valley function where ISM significantly deteriorates.
doi_str_mv 10.1109/CEC.2011.5949873
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5949873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5949873</ieee_id><sourcerecordid>5949873</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-d8a86ea27b3e4eae82b79190766bae1928b4125d40c93244fca2044f810878373</originalsourceid><addsrcrecordid>eNo1kEtLAzEYReMLrLV7wU3-QGpeM0mWZWirUBBEQdyUTOabGjuTyExK8d8bsN7NWVy4cC5Cd4zOGaPmoVpWc04ZmxdGGq3EGZoZpZnkUiotCnmOJsxIRijl5QW6-S8kvcwF1YYopd-v0Wwcv2hOWRpR0An6WOAAR9wOtodjHPY42b0PO2ydi4eQcGxxf-iSJ-0hBOhwhks-hhG3ccAvYDviYgMNXkOA5B1edLs4-PTZj7foqrXdCLMTp-httXytHsnmef1ULTbEc8kSabTVJViuagESLGheK8MMVWVZW2CG61oyXjSSOiOyVOsspxk6W2VBJabo_m_XA8D2e_C9HX62p5vEL1ZlVro</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new framework taking account of multi-funnel functions for Real-coded Genetic Algorithms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Uemura, Kento ; Kinoshita, Shun-ichi ; Nagata, Yuichi ; Kobayashi, Shigenobu ; Ono, Isao</creator><creatorcontrib>Uemura, Kento ; Kinoshita, Shun-ichi ; Nagata, Yuichi ; Kobayashi, Shigenobu ; Ono, Isao</creatorcontrib><description>In this paper, we propose a new framework taking account of multi-funnel functions for Real-coded Genetic Algorithms (RCGAs). In the continuous function optimization, Evolutionary Algorithms (EAs) are one of the most effective optimization methods. However, most conventional EAs, such as RCGAs and CMA-ES, work efficiently on functions with big-valley landscape and they deteriorate on the multi-funnel functions. Innately Split Model (ISM) has been proposed as a framework of GAs for multi-funnel functions and outperforms conventional GAs on this kind of functions. However, ISM is considered to have two problems in terms of efficiency of the search and difficulty of parameter settings. Our framework repeats a search by RCGAs as ISM does and has two effective mechanisms to remedy the two problems of ISM. We conducted experiments on benchmark functions with multi-funnel and big valley landscapes and our framework outperformed conventional EAs, Multi-start RCGA (MS-RCGA), Multi-start CMA-ES (MS CMA-ES) and ISM, on the multi-funnel functions. Our frame work achieved as good performance as MS-RCGA and MS CMA-ES on the big-valley function where ISM significantly deteriorates.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424478340</identifier><identifier>ISBN: 9781424478347</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 9781424478354</identifier><identifier>EISBN: 1424478332</identifier><identifier>EISBN: 9781424478330</identifier><identifier>EISBN: 1424478359</identifier><identifier>DOI: 10.1109/CEC.2011.5949873</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive Initialization ; Benchmark testing ; Big-valley Estimation ; Convergence ; Covariance matrix ; Ellipsoids ; Estimation ; Function Optimization ; Genetic algorithms ; ISM ; Multi-funnel Function ; Real-coded Genetic Algorithms ; Search problems</subject><ispartof>2011 IEEE Congress of Evolutionary Computation (CEC), 2011, p.2091-2098</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5949873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,792,2052,27902,54733,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5949873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Uemura, Kento</creatorcontrib><creatorcontrib>Kinoshita, Shun-ichi</creatorcontrib><creatorcontrib>Nagata, Yuichi</creatorcontrib><creatorcontrib>Kobayashi, Shigenobu</creatorcontrib><creatorcontrib>Ono, Isao</creatorcontrib><title>A new framework taking account of multi-funnel functions for Real-coded Genetic Algorithms</title><title>2011 IEEE Congress of Evolutionary Computation (CEC)</title><addtitle>CEC</addtitle><description>In this paper, we propose a new framework taking account of multi-funnel functions for Real-coded Genetic Algorithms (RCGAs). In the continuous function optimization, Evolutionary Algorithms (EAs) are one of the most effective optimization methods. However, most conventional EAs, such as RCGAs and CMA-ES, work efficiently on functions with big-valley landscape and they deteriorate on the multi-funnel functions. Innately Split Model (ISM) has been proposed as a framework of GAs for multi-funnel functions and outperforms conventional GAs on this kind of functions. However, ISM is considered to have two problems in terms of efficiency of the search and difficulty of parameter settings. Our framework repeats a search by RCGAs as ISM does and has two effective mechanisms to remedy the two problems of ISM. We conducted experiments on benchmark functions with multi-funnel and big valley landscapes and our framework outperformed conventional EAs, Multi-start RCGA (MS-RCGA), Multi-start CMA-ES (MS CMA-ES) and ISM, on the multi-funnel functions. Our frame work achieved as good performance as MS-RCGA and MS CMA-ES on the big-valley function where ISM significantly deteriorates.</description><subject>Adaptive Initialization</subject><subject>Benchmark testing</subject><subject>Big-valley Estimation</subject><subject>Convergence</subject><subject>Covariance matrix</subject><subject>Ellipsoids</subject><subject>Estimation</subject><subject>Function Optimization</subject><subject>Genetic algorithms</subject><subject>ISM</subject><subject>Multi-funnel Function</subject><subject>Real-coded Genetic Algorithms</subject><subject>Search problems</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424478340</isbn><isbn>9781424478347</isbn><isbn>9781424478354</isbn><isbn>1424478332</isbn><isbn>9781424478330</isbn><isbn>1424478359</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kEtLAzEYReMLrLV7wU3-QGpeM0mWZWirUBBEQdyUTOabGjuTyExK8d8bsN7NWVy4cC5Cd4zOGaPmoVpWc04ZmxdGGq3EGZoZpZnkUiotCnmOJsxIRijl5QW6-S8kvcwF1YYopd-v0Wwcv2hOWRpR0An6WOAAR9wOtodjHPY42b0PO2ydi4eQcGxxf-iSJ-0hBOhwhks-hhG3ccAvYDviYgMNXkOA5B1edLs4-PTZj7foqrXdCLMTp-httXytHsnmef1ULTbEc8kSabTVJViuagESLGheK8MMVWVZW2CG61oyXjSSOiOyVOsspxk6W2VBJabo_m_XA8D2e_C9HX62p5vEL1ZlVro</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Uemura, Kento</creator><creator>Kinoshita, Shun-ichi</creator><creator>Nagata, Yuichi</creator><creator>Kobayashi, Shigenobu</creator><creator>Ono, Isao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>A new framework taking account of multi-funnel functions for Real-coded Genetic Algorithms</title><author>Uemura, Kento ; Kinoshita, Shun-ichi ; Nagata, Yuichi ; Kobayashi, Shigenobu ; Ono, Isao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-d8a86ea27b3e4eae82b79190766bae1928b4125d40c93244fca2044f810878373</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive Initialization</topic><topic>Benchmark testing</topic><topic>Big-valley Estimation</topic><topic>Convergence</topic><topic>Covariance matrix</topic><topic>Ellipsoids</topic><topic>Estimation</topic><topic>Function Optimization</topic><topic>Genetic algorithms</topic><topic>ISM</topic><topic>Multi-funnel Function</topic><topic>Real-coded Genetic Algorithms</topic><topic>Search problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uemura, Kento</creatorcontrib><creatorcontrib>Kinoshita, Shun-ichi</creatorcontrib><creatorcontrib>Nagata, Yuichi</creatorcontrib><creatorcontrib>Kobayashi, Shigenobu</creatorcontrib><creatorcontrib>Ono, Isao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Uemura, Kento</au><au>Kinoshita, Shun-ichi</au><au>Nagata, Yuichi</au><au>Kobayashi, Shigenobu</au><au>Ono, Isao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new framework taking account of multi-funnel functions for Real-coded Genetic Algorithms</atitle><btitle>2011 IEEE Congress of Evolutionary Computation (CEC)</btitle><stitle>CEC</stitle><date>2011-06</date><risdate>2011</risdate><spage>2091</spage><epage>2098</epage><pages>2091-2098</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424478340</isbn><isbn>9781424478347</isbn><eisbn>9781424478354</eisbn><eisbn>1424478332</eisbn><eisbn>9781424478330</eisbn><eisbn>1424478359</eisbn><abstract>In this paper, we propose a new framework taking account of multi-funnel functions for Real-coded Genetic Algorithms (RCGAs). In the continuous function optimization, Evolutionary Algorithms (EAs) are one of the most effective optimization methods. However, most conventional EAs, such as RCGAs and CMA-ES, work efficiently on functions with big-valley landscape and they deteriorate on the multi-funnel functions. Innately Split Model (ISM) has been proposed as a framework of GAs for multi-funnel functions and outperforms conventional GAs on this kind of functions. However, ISM is considered to have two problems in terms of efficiency of the search and difficulty of parameter settings. Our framework repeats a search by RCGAs as ISM does and has two effective mechanisms to remedy the two problems of ISM. We conducted experiments on benchmark functions with multi-funnel and big valley landscapes and our framework outperformed conventional EAs, Multi-start RCGA (MS-RCGA), Multi-start CMA-ES (MS CMA-ES) and ISM, on the multi-funnel functions. Our frame work achieved as good performance as MS-RCGA and MS CMA-ES on the big-valley function where ISM significantly deteriorates.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2011.5949873</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2011 IEEE Congress of Evolutionary Computation (CEC), 2011, p.2091-2098
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_5949873
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive Initialization
Benchmark testing
Big-valley Estimation
Convergence
Covariance matrix
Ellipsoids
Estimation
Function Optimization
Genetic algorithms
ISM
Multi-funnel Function
Real-coded Genetic Algorithms
Search problems
title A new framework taking account of multi-funnel functions for Real-coded Genetic Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20framework%20taking%20account%20of%20multi-funnel%20functions%20for%20Real-coded%20Genetic%20Algorithms&rft.btitle=2011%20IEEE%20Congress%20of%20Evolutionary%20Computation%20(CEC)&rft.au=Uemura,%20Kento&rft.date=2011-06&rft.spage=2091&rft.epage=2098&rft.pages=2091-2098&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424478340&rft.isbn_list=9781424478347&rft_id=info:doi/10.1109/CEC.2011.5949873&rft_dat=%3Cieee_6IE%3E5949873%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424478354&rft.eisbn_list=1424478332&rft.eisbn_list=9781424478330&rft.eisbn_list=1424478359&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5949873&rfr_iscdi=true