Sharing mutation genetic algorithm for solving multi-objective problems
Multi-objective optimization (MO) has been an active area of research in last two decade. In multi-objective genetic algorithm (MOGA), quality of new generated offspring of population will affect the performance of finding Pareto optimum directly. In this paper, an improved MOGA is proposed named SM...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1839 |
---|---|
container_issue | |
container_start_page | 1833 |
container_title | |
container_volume | |
creator | Sheng-Ta Hsieh Shih-Yuan Chiu Shi-Jim Yen |
description | Multi-objective optimization (MO) has been an active area of research in last two decade. In multi-objective genetic algorithm (MOGA), quality of new generated offspring of population will affect the performance of finding Pareto optimum directly. In this paper, an improved MOGA is proposed named SMGA to solving multi-objective optimization problem. For improving solution searching efficiency, an effective mutation named sharing mutation is adopted for generating potential offspring. Experiments were conducted on CEC-09 MOP test problems. The results showed that the proposed method exhibits better performance when solving these benchmark problems compared to related multi-objective evolutionary algorithm (MOEA). |
doi_str_mv | 10.1109/CEC.2011.5949838 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5949838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5949838</ieee_id><sourcerecordid>5949838</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-911099401aa6e8de5115e37c82e6def61dd886c746dee66460e21adad105ab5c3</originalsourceid><addsrcrecordid>eNo1UEtLw0AYXF9grbkLXvYPbNwv2edRQluFggcVvJVN8iXdkjRlsxb890Za5zIMMwzMEPIAPAXg9qlYFGnGAVJphTW5uSCJ1QZEJoQ2uRSXZAZWAOM8U1fk7t8Q_HoyuLFMa_N1S5Jx3PEJStlc8hlZvW9d8PuW9t_RRT_saYt7jL6irmuH4OO2p80Q6Dh0x1Osi54N5Q6r6I9ID2EoO-zHe3LTuG7E5Mxz8rlcfBQvbP22ei2e18yDlpHZvy1WcHBOoalRAkjMdWUyVDU2CuraGFVpMSlUSiiOGbja1cClK2WVz8njqdcj4uYQfO_Cz-b8Sf4L1ANRlw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sharing mutation genetic algorithm for solving multi-objective problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sheng-Ta Hsieh ; Shih-Yuan Chiu ; Shi-Jim Yen</creator><creatorcontrib>Sheng-Ta Hsieh ; Shih-Yuan Chiu ; Shi-Jim Yen</creatorcontrib><description>Multi-objective optimization (MO) has been an active area of research in last two decade. In multi-objective genetic algorithm (MOGA), quality of new generated offspring of population will affect the performance of finding Pareto optimum directly. In this paper, an improved MOGA is proposed named SMGA to solving multi-objective optimization problem. For improving solution searching efficiency, an effective mutation named sharing mutation is adopted for generating potential offspring. Experiments were conducted on CEC-09 MOP test problems. The results showed that the proposed method exhibits better performance when solving these benchmark problems compared to related multi-objective evolutionary algorithm (MOEA).</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424478340</identifier><identifier>ISBN: 9781424478347</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 9781424478354</identifier><identifier>EISBN: 1424478332</identifier><identifier>EISBN: 9781424478330</identifier><identifier>EISBN: 1424478359</identifier><identifier>DOI: 10.1109/CEC.2011.5949838</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Convergence ; Evolutionary computation ; genetic algorithm ; Genetic algorithms ; multi-objective ; Optimization ; Search problems ; sharing mutation ; Space exploration</subject><ispartof>2011 IEEE Congress of Evolutionary Computation (CEC), 2011, p.1833-1839</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5949838$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,792,2052,27902,54733,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5949838$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sheng-Ta Hsieh</creatorcontrib><creatorcontrib>Shih-Yuan Chiu</creatorcontrib><creatorcontrib>Shi-Jim Yen</creatorcontrib><title>Sharing mutation genetic algorithm for solving multi-objective problems</title><title>2011 IEEE Congress of Evolutionary Computation (CEC)</title><addtitle>CEC</addtitle><description>Multi-objective optimization (MO) has been an active area of research in last two decade. In multi-objective genetic algorithm (MOGA), quality of new generated offspring of population will affect the performance of finding Pareto optimum directly. In this paper, an improved MOGA is proposed named SMGA to solving multi-objective optimization problem. For improving solution searching efficiency, an effective mutation named sharing mutation is adopted for generating potential offspring. Experiments were conducted on CEC-09 MOP test problems. The results showed that the proposed method exhibits better performance when solving these benchmark problems compared to related multi-objective evolutionary algorithm (MOEA).</description><subject>Biological cells</subject><subject>Convergence</subject><subject>Evolutionary computation</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>multi-objective</subject><subject>Optimization</subject><subject>Search problems</subject><subject>sharing mutation</subject><subject>Space exploration</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424478340</isbn><isbn>9781424478347</isbn><isbn>9781424478354</isbn><isbn>1424478332</isbn><isbn>9781424478330</isbn><isbn>1424478359</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UEtLw0AYXF9grbkLXvYPbNwv2edRQluFggcVvJVN8iXdkjRlsxb890Za5zIMMwzMEPIAPAXg9qlYFGnGAVJphTW5uSCJ1QZEJoQ2uRSXZAZWAOM8U1fk7t8Q_HoyuLFMa_N1S5Jx3PEJStlc8hlZvW9d8PuW9t_RRT_saYt7jL6irmuH4OO2p80Q6Dh0x1Osi54N5Q6r6I9ID2EoO-zHe3LTuG7E5Mxz8rlcfBQvbP22ei2e18yDlpHZvy1WcHBOoalRAkjMdWUyVDU2CuraGFVpMSlUSiiOGbja1cClK2WVz8njqdcj4uYQfO_Cz-b8Sf4L1ANRlw</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Sheng-Ta Hsieh</creator><creator>Shih-Yuan Chiu</creator><creator>Shi-Jim Yen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Sharing mutation genetic algorithm for solving multi-objective problems</title><author>Sheng-Ta Hsieh ; Shih-Yuan Chiu ; Shi-Jim Yen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-911099401aa6e8de5115e37c82e6def61dd886c746dee66460e21adad105ab5c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological cells</topic><topic>Convergence</topic><topic>Evolutionary computation</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>multi-objective</topic><topic>Optimization</topic><topic>Search problems</topic><topic>sharing mutation</topic><topic>Space exploration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheng-Ta Hsieh</creatorcontrib><creatorcontrib>Shih-Yuan Chiu</creatorcontrib><creatorcontrib>Shi-Jim Yen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sheng-Ta Hsieh</au><au>Shih-Yuan Chiu</au><au>Shi-Jim Yen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sharing mutation genetic algorithm for solving multi-objective problems</atitle><btitle>2011 IEEE Congress of Evolutionary Computation (CEC)</btitle><stitle>CEC</stitle><date>2011-06</date><risdate>2011</risdate><spage>1833</spage><epage>1839</epage><pages>1833-1839</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424478340</isbn><isbn>9781424478347</isbn><eisbn>9781424478354</eisbn><eisbn>1424478332</eisbn><eisbn>9781424478330</eisbn><eisbn>1424478359</eisbn><abstract>Multi-objective optimization (MO) has been an active area of research in last two decade. In multi-objective genetic algorithm (MOGA), quality of new generated offspring of population will affect the performance of finding Pareto optimum directly. In this paper, an improved MOGA is proposed named SMGA to solving multi-objective optimization problem. For improving solution searching efficiency, an effective mutation named sharing mutation is adopted for generating potential offspring. Experiments were conducted on CEC-09 MOP test problems. The results showed that the proposed method exhibits better performance when solving these benchmark problems compared to related multi-objective evolutionary algorithm (MOEA).</abstract><pub>IEEE</pub><doi>10.1109/CEC.2011.5949838</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2011 IEEE Congress of Evolutionary Computation (CEC), 2011, p.1833-1839 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_5949838 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological cells Convergence Evolutionary computation genetic algorithm Genetic algorithms multi-objective Optimization Search problems sharing mutation Space exploration |
title | Sharing mutation genetic algorithm for solving multi-objective problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sharing%20mutation%20genetic%20algorithm%20for%20solving%20multi-objective%20problems&rft.btitle=2011%20IEEE%20Congress%20of%20Evolutionary%20Computation%20(CEC)&rft.au=Sheng-Ta%20Hsieh&rft.date=2011-06&rft.spage=1833&rft.epage=1839&rft.pages=1833-1839&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424478340&rft.isbn_list=9781424478347&rft_id=info:doi/10.1109/CEC.2011.5949838&rft_dat=%3Cieee_6IE%3E5949838%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424478354&rft.eisbn_list=1424478332&rft.eisbn_list=9781424478330&rft.eisbn_list=1424478359&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5949838&rfr_iscdi=true |