Sharing mutation genetic algorithm for solving multi-objective problems

Multi-objective optimization (MO) has been an active area of research in last two decade. In multi-objective genetic algorithm (MOGA), quality of new generated offspring of population will affect the performance of finding Pareto optimum directly. In this paper, an improved MOGA is proposed named SM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sheng-Ta Hsieh, Shih-Yuan Chiu, Shi-Jim Yen
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1839
container_issue
container_start_page 1833
container_title
container_volume
creator Sheng-Ta Hsieh
Shih-Yuan Chiu
Shi-Jim Yen
description Multi-objective optimization (MO) has been an active area of research in last two decade. In multi-objective genetic algorithm (MOGA), quality of new generated offspring of population will affect the performance of finding Pareto optimum directly. In this paper, an improved MOGA is proposed named SMGA to solving multi-objective optimization problem. For improving solution searching efficiency, an effective mutation named sharing mutation is adopted for generating potential offspring. Experiments were conducted on CEC-09 MOP test problems. The results showed that the proposed method exhibits better performance when solving these benchmark problems compared to related multi-objective evolutionary algorithm (MOEA).
doi_str_mv 10.1109/CEC.2011.5949838
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5949838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5949838</ieee_id><sourcerecordid>5949838</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-911099401aa6e8de5115e37c82e6def61dd886c746dee66460e21adad105ab5c3</originalsourceid><addsrcrecordid>eNo1UEtLw0AYXF9grbkLXvYPbNwv2edRQluFggcVvJVN8iXdkjRlsxb890Za5zIMMwzMEPIAPAXg9qlYFGnGAVJphTW5uSCJ1QZEJoQ2uRSXZAZWAOM8U1fk7t8Q_HoyuLFMa_N1S5Jx3PEJStlc8hlZvW9d8PuW9t_RRT_saYt7jL6irmuH4OO2p80Q6Dh0x1Osi54N5Q6r6I9ID2EoO-zHe3LTuG7E5Mxz8rlcfBQvbP22ei2e18yDlpHZvy1WcHBOoalRAkjMdWUyVDU2CuraGFVpMSlUSiiOGbja1cClK2WVz8njqdcj4uYQfO_Cz-b8Sf4L1ANRlw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sharing mutation genetic algorithm for solving multi-objective problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sheng-Ta Hsieh ; Shih-Yuan Chiu ; Shi-Jim Yen</creator><creatorcontrib>Sheng-Ta Hsieh ; Shih-Yuan Chiu ; Shi-Jim Yen</creatorcontrib><description>Multi-objective optimization (MO) has been an active area of research in last two decade. In multi-objective genetic algorithm (MOGA), quality of new generated offspring of population will affect the performance of finding Pareto optimum directly. In this paper, an improved MOGA is proposed named SMGA to solving multi-objective optimization problem. For improving solution searching efficiency, an effective mutation named sharing mutation is adopted for generating potential offspring. Experiments were conducted on CEC-09 MOP test problems. The results showed that the proposed method exhibits better performance when solving these benchmark problems compared to related multi-objective evolutionary algorithm (MOEA).</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424478340</identifier><identifier>ISBN: 9781424478347</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 9781424478354</identifier><identifier>EISBN: 1424478332</identifier><identifier>EISBN: 9781424478330</identifier><identifier>EISBN: 1424478359</identifier><identifier>DOI: 10.1109/CEC.2011.5949838</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Convergence ; Evolutionary computation ; genetic algorithm ; Genetic algorithms ; multi-objective ; Optimization ; Search problems ; sharing mutation ; Space exploration</subject><ispartof>2011 IEEE Congress of Evolutionary Computation (CEC), 2011, p.1833-1839</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5949838$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,792,2052,27902,54733,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5949838$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sheng-Ta Hsieh</creatorcontrib><creatorcontrib>Shih-Yuan Chiu</creatorcontrib><creatorcontrib>Shi-Jim Yen</creatorcontrib><title>Sharing mutation genetic algorithm for solving multi-objective problems</title><title>2011 IEEE Congress of Evolutionary Computation (CEC)</title><addtitle>CEC</addtitle><description>Multi-objective optimization (MO) has been an active area of research in last two decade. In multi-objective genetic algorithm (MOGA), quality of new generated offspring of population will affect the performance of finding Pareto optimum directly. In this paper, an improved MOGA is proposed named SMGA to solving multi-objective optimization problem. For improving solution searching efficiency, an effective mutation named sharing mutation is adopted for generating potential offspring. Experiments were conducted on CEC-09 MOP test problems. The results showed that the proposed method exhibits better performance when solving these benchmark problems compared to related multi-objective evolutionary algorithm (MOEA).</description><subject>Biological cells</subject><subject>Convergence</subject><subject>Evolutionary computation</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>multi-objective</subject><subject>Optimization</subject><subject>Search problems</subject><subject>sharing mutation</subject><subject>Space exploration</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424478340</isbn><isbn>9781424478347</isbn><isbn>9781424478354</isbn><isbn>1424478332</isbn><isbn>9781424478330</isbn><isbn>1424478359</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UEtLw0AYXF9grbkLXvYPbNwv2edRQluFggcVvJVN8iXdkjRlsxb890Za5zIMMwzMEPIAPAXg9qlYFGnGAVJphTW5uSCJ1QZEJoQ2uRSXZAZWAOM8U1fk7t8Q_HoyuLFMa_N1S5Jx3PEJStlc8hlZvW9d8PuW9t_RRT_saYt7jL6irmuH4OO2p80Q6Dh0x1Osi54N5Q6r6I9ID2EoO-zHe3LTuG7E5Mxz8rlcfBQvbP22ei2e18yDlpHZvy1WcHBOoalRAkjMdWUyVDU2CuraGFVpMSlUSiiOGbja1cClK2WVz8njqdcj4uYQfO_Cz-b8Sf4L1ANRlw</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Sheng-Ta Hsieh</creator><creator>Shih-Yuan Chiu</creator><creator>Shi-Jim Yen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Sharing mutation genetic algorithm for solving multi-objective problems</title><author>Sheng-Ta Hsieh ; Shih-Yuan Chiu ; Shi-Jim Yen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-911099401aa6e8de5115e37c82e6def61dd886c746dee66460e21adad105ab5c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological cells</topic><topic>Convergence</topic><topic>Evolutionary computation</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>multi-objective</topic><topic>Optimization</topic><topic>Search problems</topic><topic>sharing mutation</topic><topic>Space exploration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheng-Ta Hsieh</creatorcontrib><creatorcontrib>Shih-Yuan Chiu</creatorcontrib><creatorcontrib>Shi-Jim Yen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sheng-Ta Hsieh</au><au>Shih-Yuan Chiu</au><au>Shi-Jim Yen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sharing mutation genetic algorithm for solving multi-objective problems</atitle><btitle>2011 IEEE Congress of Evolutionary Computation (CEC)</btitle><stitle>CEC</stitle><date>2011-06</date><risdate>2011</risdate><spage>1833</spage><epage>1839</epage><pages>1833-1839</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424478340</isbn><isbn>9781424478347</isbn><eisbn>9781424478354</eisbn><eisbn>1424478332</eisbn><eisbn>9781424478330</eisbn><eisbn>1424478359</eisbn><abstract>Multi-objective optimization (MO) has been an active area of research in last two decade. In multi-objective genetic algorithm (MOGA), quality of new generated offspring of population will affect the performance of finding Pareto optimum directly. In this paper, an improved MOGA is proposed named SMGA to solving multi-objective optimization problem. For improving solution searching efficiency, an effective mutation named sharing mutation is adopted for generating potential offspring. Experiments were conducted on CEC-09 MOP test problems. The results showed that the proposed method exhibits better performance when solving these benchmark problems compared to related multi-objective evolutionary algorithm (MOEA).</abstract><pub>IEEE</pub><doi>10.1109/CEC.2011.5949838</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2011 IEEE Congress of Evolutionary Computation (CEC), 2011, p.1833-1839
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_5949838
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological cells
Convergence
Evolutionary computation
genetic algorithm
Genetic algorithms
multi-objective
Optimization
Search problems
sharing mutation
Space exploration
title Sharing mutation genetic algorithm for solving multi-objective problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sharing%20mutation%20genetic%20algorithm%20for%20solving%20multi-objective%20problems&rft.btitle=2011%20IEEE%20Congress%20of%20Evolutionary%20Computation%20(CEC)&rft.au=Sheng-Ta%20Hsieh&rft.date=2011-06&rft.spage=1833&rft.epage=1839&rft.pages=1833-1839&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424478340&rft.isbn_list=9781424478347&rft_id=info:doi/10.1109/CEC.2011.5949838&rft_dat=%3Cieee_6IE%3E5949838%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424478354&rft.eisbn_list=1424478332&rft.eisbn_list=9781424478330&rft.eisbn_list=1424478359&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5949838&rfr_iscdi=true