Sentence simplification for spoken language understanding

In this paper, we present a sentence simplification method and demonstrate its use to improve intent determination and slot filling tasks in spoken language understanding (SLU) systems. This research is motivated by the observation that, while current statistical SLU models usually perform accuratel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tur, Gokhan, Hakkani-Tur, Dilek, Heck, Larry, Parthasarathy, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5631
container_issue
container_start_page 5628
container_title
container_volume
creator Tur, Gokhan
Hakkani-Tur, Dilek
Heck, Larry
Parthasarathy, S.
description In this paper, we present a sentence simplification method and demonstrate its use to improve intent determination and slot filling tasks in spoken language understanding (SLU) systems. This research is motivated by the observation that, while current statistical SLU models usually perform accurately for simple, well-formed sentences, error rates increase for more complex, longer, more natural or spontaneous utterances. Furthermore, users familiar with web search usually formulate their information requests as a keyword search query, suggesting that frameworks which can handle both forms of inputs is required. We propose a dependency parsing-based sentence simplification approach that extracts a set of keywords from natural language sentences and uses those in addition to entire utterances for completing SLU tasks. We evaluated this approach using the well studied ATIS corpus with manual and automatic transcriptions and observed significant error reductions for both intent determination (30% relative) and slot filling (15% relative) tasks over the state-of the-art performances.
doi_str_mv 10.1109/ICASSP.2011.5947636
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5947636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5947636</ieee_id><sourcerecordid>5947636</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c01440d63c1a87417155b0ae6186bbdfd785d019292fad1dc18c8dae9303e133</originalsourceid><addsrcrecordid>eNo1kMtqwzAURNUX1E39Bdn4B-zeK1mvZQl9QaAFZ9FdkK1ro9aRje0s-vcNNJ3NLA4Mh2FsjVAggn142zxW1UfBAbGQttRKqAt2h6XUGqSw-pIlXGibo4XPK5Zabf6ZgWuWoOSQKyztLUvn-QtOUVxraRNmK4oLxYayORzGPrShcUsYYtYOUzaPwzfFrHexO7qOsmP0NM2Liz7E7p7dtK6fKT33iu2en3ab13z7_nLy3eYBtVzyBrAswSvRoDO6RI1S1uBIoVF17VuvjfSAllveOo--QdMY78gKEIRCrNj6bzYQ0X6cwsFNP_vzCeIXfN1Mmg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sentence simplification for spoken language understanding</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tur, Gokhan ; Hakkani-Tur, Dilek ; Heck, Larry ; Parthasarathy, S.</creator><creatorcontrib>Tur, Gokhan ; Hakkani-Tur, Dilek ; Heck, Larry ; Parthasarathy, S.</creatorcontrib><description>In this paper, we present a sentence simplification method and demonstrate its use to improve intent determination and slot filling tasks in spoken language understanding (SLU) systems. This research is motivated by the observation that, while current statistical SLU models usually perform accurately for simple, well-formed sentences, error rates increase for more complex, longer, more natural or spontaneous utterances. Furthermore, users familiar with web search usually formulate their information requests as a keyword search query, suggesting that frameworks which can handle both forms of inputs is required. We propose a dependency parsing-based sentence simplification approach that extracts a set of keywords from natural language sentences and uses those in addition to entire utterances for completing SLU tasks. We evaluated this approach using the well studied ATIS corpus with manual and automatic transcriptions and observed significant error reductions for both intent determination (30% relative) and slot filling (15% relative) tasks over the state-of the-art performances.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781457705380</identifier><identifier>ISBN: 1457705389</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1457705397</identifier><identifier>EISBN: 9781457705373</identifier><identifier>EISBN: 9781457705397</identifier><identifier>EISBN: 1457705370</identifier><identifier>DOI: 10.1109/ICASSP.2011.5947636</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conferences ; dependency parsing ; Error analysis ; intent determination ; Manuals ; Natural languages ; semantic parsing ; Semantics ; sentence simplification ; slot filling ; Speech recognition ; spoken language understanding ; Syntactics</subject><ispartof>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, p.5628-5631</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5947636$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5947636$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tur, Gokhan</creatorcontrib><creatorcontrib>Hakkani-Tur, Dilek</creatorcontrib><creatorcontrib>Heck, Larry</creatorcontrib><creatorcontrib>Parthasarathy, S.</creatorcontrib><title>Sentence simplification for spoken language understanding</title><title>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>In this paper, we present a sentence simplification method and demonstrate its use to improve intent determination and slot filling tasks in spoken language understanding (SLU) systems. This research is motivated by the observation that, while current statistical SLU models usually perform accurately for simple, well-formed sentences, error rates increase for more complex, longer, more natural or spontaneous utterances. Furthermore, users familiar with web search usually formulate their information requests as a keyword search query, suggesting that frameworks which can handle both forms of inputs is required. We propose a dependency parsing-based sentence simplification approach that extracts a set of keywords from natural language sentences and uses those in addition to entire utterances for completing SLU tasks. We evaluated this approach using the well studied ATIS corpus with manual and automatic transcriptions and observed significant error reductions for both intent determination (30% relative) and slot filling (15% relative) tasks over the state-of the-art performances.</description><subject>Conferences</subject><subject>dependency parsing</subject><subject>Error analysis</subject><subject>intent determination</subject><subject>Manuals</subject><subject>Natural languages</subject><subject>semantic parsing</subject><subject>Semantics</subject><subject>sentence simplification</subject><subject>slot filling</subject><subject>Speech recognition</subject><subject>spoken language understanding</subject><subject>Syntactics</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781457705380</isbn><isbn>1457705389</isbn><isbn>1457705397</isbn><isbn>9781457705373</isbn><isbn>9781457705397</isbn><isbn>1457705370</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtqwzAURNUX1E39Bdn4B-zeK1mvZQl9QaAFZ9FdkK1ro9aRje0s-vcNNJ3NLA4Mh2FsjVAggn142zxW1UfBAbGQttRKqAt2h6XUGqSw-pIlXGibo4XPK5Zabf6ZgWuWoOSQKyztLUvn-QtOUVxraRNmK4oLxYayORzGPrShcUsYYtYOUzaPwzfFrHexO7qOsmP0NM2Liz7E7p7dtK6fKT33iu2en3ab13z7_nLy3eYBtVzyBrAswSvRoDO6RI1S1uBIoVF17VuvjfSAllveOo--QdMY78gKEIRCrNj6bzYQ0X6cwsFNP_vzCeIXfN1Mmg</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Tur, Gokhan</creator><creator>Hakkani-Tur, Dilek</creator><creator>Heck, Larry</creator><creator>Parthasarathy, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201105</creationdate><title>Sentence simplification for spoken language understanding</title><author>Tur, Gokhan ; Hakkani-Tur, Dilek ; Heck, Larry ; Parthasarathy, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c01440d63c1a87417155b0ae6186bbdfd785d019292fad1dc18c8dae9303e133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Conferences</topic><topic>dependency parsing</topic><topic>Error analysis</topic><topic>intent determination</topic><topic>Manuals</topic><topic>Natural languages</topic><topic>semantic parsing</topic><topic>Semantics</topic><topic>sentence simplification</topic><topic>slot filling</topic><topic>Speech recognition</topic><topic>spoken language understanding</topic><topic>Syntactics</topic><toplevel>online_resources</toplevel><creatorcontrib>Tur, Gokhan</creatorcontrib><creatorcontrib>Hakkani-Tur, Dilek</creatorcontrib><creatorcontrib>Heck, Larry</creatorcontrib><creatorcontrib>Parthasarathy, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tur, Gokhan</au><au>Hakkani-Tur, Dilek</au><au>Heck, Larry</au><au>Parthasarathy, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sentence simplification for spoken language understanding</atitle><btitle>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2011-05</date><risdate>2011</risdate><spage>5628</spage><epage>5631</epage><pages>5628-5631</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781457705380</isbn><isbn>1457705389</isbn><eisbn>1457705397</eisbn><eisbn>9781457705373</eisbn><eisbn>9781457705397</eisbn><eisbn>1457705370</eisbn><abstract>In this paper, we present a sentence simplification method and demonstrate its use to improve intent determination and slot filling tasks in spoken language understanding (SLU) systems. This research is motivated by the observation that, while current statistical SLU models usually perform accurately for simple, well-formed sentences, error rates increase for more complex, longer, more natural or spontaneous utterances. Furthermore, users familiar with web search usually formulate their information requests as a keyword search query, suggesting that frameworks which can handle both forms of inputs is required. We propose a dependency parsing-based sentence simplification approach that extracts a set of keywords from natural language sentences and uses those in addition to entire utterances for completing SLU tasks. We evaluated this approach using the well studied ATIS corpus with manual and automatic transcriptions and observed significant error reductions for both intent determination (30% relative) and slot filling (15% relative) tasks over the state-of the-art performances.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2011.5947636</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, p.5628-5631
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_5947636
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Conferences
dependency parsing
Error analysis
intent determination
Manuals
Natural languages
semantic parsing
Semantics
sentence simplification
slot filling
Speech recognition
spoken language understanding
Syntactics
title Sentence simplification for spoken language understanding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sentence%20simplification%20for%20spoken%20language%20understanding&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Tur,%20Gokhan&rft.date=2011-05&rft.spage=5628&rft.epage=5631&rft.pages=5628-5631&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781457705380&rft.isbn_list=1457705389&rft_id=info:doi/10.1109/ICASSP.2011.5947636&rft_dat=%3Cieee_6IE%3E5947636%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457705397&rft.eisbn_list=9781457705373&rft.eisbn_list=9781457705397&rft.eisbn_list=1457705370&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5947636&rfr_iscdi=true