Handling verbose queries for spoken document retrieval

Query-by-example information retrieval provides users a flexible but efficient way to accurately describe their information needs. The query exemplars are usually long and in the form of either a partial or even a full document. However, they may contain extraneous terms that would have potential ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shih-Hsiang Lin, Ea-Ee Jan, Chen, Berlin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5555
container_issue
container_start_page 5552
container_title
container_volume
creator Shih-Hsiang Lin
Ea-Ee Jan
Chen, Berlin
description Query-by-example information retrieval provides users a flexible but efficient way to accurately describe their information needs. The query exemplars are usually long and in the form of either a partial or even a full document. However, they may contain extraneous terms that would have potential negative impacts on the retrieval performance. In order to alleviate those negative impacts, we propose a novel term-based query reduction mechanism so as to improve the informativeness of verbose query exemplars. We also explore the notion of term discrimination power to select a salient subset of query terms automatically. Experiments on the TDT Chinese collection show that the proposed approach is indeed effective and promising.
doi_str_mv 10.1109/ICASSP.2011.5947617
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5947617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5947617</ieee_id><sourcerecordid>5947617</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a1fe93fce7458a08a72c8ea50875c8e7ecf451ecb8108ac656d0a2d5000106843</originalsourceid><addsrcrecordid>eNo1kF9LwzAUxeM_sM5-gr3kC7Tmpklu8ihDN2GgMAXfRpbeSrVrZ7IN_PYWnOflHPjB4XAYm4IoAYS7e5rdr1YvpRQApXYKDeAZuwGlEYWuHJ6zTFboCnDi_YLlDu0_s-KSZaClKAwod83ylD7FKCMRtcuYWfi-7tr-gx8pboZE_PtAsaXEmyHytBu-qOf1EA5b6vc80n5kR9_dsqvGd4nyk0_Y2-PD62xRLJ_n49hl0QLqfeGhIVc1gVBp64X1KIMlr4VFPQak0CgNFDYWRhiMNrXwstbjQBDGqmrCpn-9LRGtd7Hd-vizPl1Q_QK72Eul</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Handling verbose queries for spoken document retrieval</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shih-Hsiang Lin ; Ea-Ee Jan ; Chen, Berlin</creator><creatorcontrib>Shih-Hsiang Lin ; Ea-Ee Jan ; Chen, Berlin</creatorcontrib><description>Query-by-example information retrieval provides users a flexible but efficient way to accurately describe their information needs. The query exemplars are usually long and in the form of either a partial or even a full document. However, they may contain extraneous terms that would have potential negative impacts on the retrieval performance. In order to alleviate those negative impacts, we propose a novel term-based query reduction mechanism so as to improve the informativeness of verbose query exemplars. We also explore the notion of term discrimination power to select a salient subset of query terms automatically. Experiments on the TDT Chinese collection show that the proposed approach is indeed effective and promising.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781457705380</identifier><identifier>ISBN: 1457705389</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1457705397</identifier><identifier>EISBN: 9781457705373</identifier><identifier>EISBN: 9781457705397</identifier><identifier>EISBN: 1457705370</identifier><identifier>DOI: 10.1109/ICASSP.2011.5947617</identifier><language>eng</language><publisher>IEEE</publisher><subject>Entropy ; Hidden Markov models ; Information retrieval ; Markov processes ; Query-by-example ; Semantics ; Supervised learning ; term-based query reduction ; Training ; verbose query</subject><ispartof>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, p.5552-5555</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5947617$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5947617$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shih-Hsiang Lin</creatorcontrib><creatorcontrib>Ea-Ee Jan</creatorcontrib><creatorcontrib>Chen, Berlin</creatorcontrib><title>Handling verbose queries for spoken document retrieval</title><title>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Query-by-example information retrieval provides users a flexible but efficient way to accurately describe their information needs. The query exemplars are usually long and in the form of either a partial or even a full document. However, they may contain extraneous terms that would have potential negative impacts on the retrieval performance. In order to alleviate those negative impacts, we propose a novel term-based query reduction mechanism so as to improve the informativeness of verbose query exemplars. We also explore the notion of term discrimination power to select a salient subset of query terms automatically. Experiments on the TDT Chinese collection show that the proposed approach is indeed effective and promising.</description><subject>Entropy</subject><subject>Hidden Markov models</subject><subject>Information retrieval</subject><subject>Markov processes</subject><subject>Query-by-example</subject><subject>Semantics</subject><subject>Supervised learning</subject><subject>term-based query reduction</subject><subject>Training</subject><subject>verbose query</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781457705380</isbn><isbn>1457705389</isbn><isbn>1457705397</isbn><isbn>9781457705373</isbn><isbn>9781457705397</isbn><isbn>1457705370</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kF9LwzAUxeM_sM5-gr3kC7Tmpklu8ihDN2GgMAXfRpbeSrVrZ7IN_PYWnOflHPjB4XAYm4IoAYS7e5rdr1YvpRQApXYKDeAZuwGlEYWuHJ6zTFboCnDi_YLlDu0_s-KSZaClKAwod83ylD7FKCMRtcuYWfi-7tr-gx8pboZE_PtAsaXEmyHytBu-qOf1EA5b6vc80n5kR9_dsqvGd4nyk0_Y2-PD62xRLJ_n49hl0QLqfeGhIVc1gVBp64X1KIMlr4VFPQak0CgNFDYWRhiMNrXwstbjQBDGqmrCpn-9LRGtd7Hd-vizPl1Q_QK72Eul</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Shih-Hsiang Lin</creator><creator>Ea-Ee Jan</creator><creator>Chen, Berlin</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201105</creationdate><title>Handling verbose queries for spoken document retrieval</title><author>Shih-Hsiang Lin ; Ea-Ee Jan ; Chen, Berlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a1fe93fce7458a08a72c8ea50875c8e7ecf451ecb8108ac656d0a2d5000106843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Entropy</topic><topic>Hidden Markov models</topic><topic>Information retrieval</topic><topic>Markov processes</topic><topic>Query-by-example</topic><topic>Semantics</topic><topic>Supervised learning</topic><topic>term-based query reduction</topic><topic>Training</topic><topic>verbose query</topic><toplevel>online_resources</toplevel><creatorcontrib>Shih-Hsiang Lin</creatorcontrib><creatorcontrib>Ea-Ee Jan</creatorcontrib><creatorcontrib>Chen, Berlin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shih-Hsiang Lin</au><au>Ea-Ee Jan</au><au>Chen, Berlin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Handling verbose queries for spoken document retrieval</atitle><btitle>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2011-05</date><risdate>2011</risdate><spage>5552</spage><epage>5555</epage><pages>5552-5555</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781457705380</isbn><isbn>1457705389</isbn><eisbn>1457705397</eisbn><eisbn>9781457705373</eisbn><eisbn>9781457705397</eisbn><eisbn>1457705370</eisbn><abstract>Query-by-example information retrieval provides users a flexible but efficient way to accurately describe their information needs. The query exemplars are usually long and in the form of either a partial or even a full document. However, they may contain extraneous terms that would have potential negative impacts on the retrieval performance. In order to alleviate those negative impacts, we propose a novel term-based query reduction mechanism so as to improve the informativeness of verbose query exemplars. We also explore the notion of term discrimination power to select a salient subset of query terms automatically. Experiments on the TDT Chinese collection show that the proposed approach is indeed effective and promising.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2011.5947617</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, p.5552-5555
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_5947617
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Entropy
Hidden Markov models
Information retrieval
Markov processes
Query-by-example
Semantics
Supervised learning
term-based query reduction
Training
verbose query
title Handling verbose queries for spoken document retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Handling%20verbose%20queries%20for%20spoken%20document%20retrieval&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Shih-Hsiang%20Lin&rft.date=2011-05&rft.spage=5552&rft.epage=5555&rft.pages=5552-5555&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781457705380&rft.isbn_list=1457705389&rft_id=info:doi/10.1109/ICASSP.2011.5947617&rft_dat=%3Cieee_6IE%3E5947617%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457705397&rft.eisbn_list=9781457705373&rft.eisbn_list=9781457705397&rft.eisbn_list=1457705370&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5947617&rfr_iscdi=true