Dirichlet Mixture Models of neural net posteriors for HMM-based speech recognition

In this paper, we present a novel technique for modeling the posterior probability estimates obtained from a neural net work directly in the HMM framework using the Dirichlet Mixture Models (DMMs). Since posterior probability vectors lie on a probability simplex their distribution can be modeled usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Balakrishnan, V., Sivaram, G. S. V. S., Khudanpur, Sanjeev
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!