Dirichlet Mixture Models of neural net posteriors for HMM-based speech recognition
In this paper, we present a novel technique for modeling the posterior probability estimates obtained from a neural net work directly in the HMM framework using the Dirichlet Mixture Models (DMMs). Since posterior probability vectors lie on a probability simplex their distribution can be modeled usi...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!