Speech-based identification of social groups in a single accent of British English by humans and computers
Classification of social groups within a given accent is a challenging refinement of language identification (LID) and accent/dialect recognition. The 2001 census of England and Wales identifies two main ethnic groups in the city of Birmingham, which it refers to as Asian and white. In this paper LI...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4879 |
---|---|
container_issue | |
container_start_page | 4876 |
container_title | |
container_volume | |
creator | Hanani, Abualsoud Russell, Martin Carey, Michael J. |
description | Classification of social groups within a given accent is a challenging refinement of language identification (LID) and accent/dialect recognition. The 2001 census of England and Wales identifies two main ethnic groups in the city of Birmingham, which it refers to as Asian and white. In this paper LID techniques are applied to the problem of identifying individuals from these two groups who were born in Birmingham and hence speak British English with a Birmingham accent. An Equal Error Rate (EER) of 3.57% is obtained using a LID system which fuses the outputs of several acoustic and phonotactic systems. This performance is much better than expected and compares to an EER of 8.72% achieved by human listeners. The implications of this result for automatic speech recognition are discussed. |
doi_str_mv | 10.1109/ICASSP.2011.5947448 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5947448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5947448</ieee_id><sourcerecordid>5947448</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-80b829a75f674a673cf9a09a98c1ac4673f62b35667125a5f109983c1c251a273</originalsourceid><addsrcrecordid>eNo1UM1qAjEYTP-g1voEXvICa_P_JcdWtC0ILdhCb_JtTDSiu8tmPfj2Xamdy8DMMDBDyJizCefMPb1Pn5fLz4lgnE-0U6CUvSIPXGkApqWDazIQElzBHfu5ISMH9t-z7JYMuBasMFy5ezLKecd6GAGg3YDslk0IfluUmMOapnWouhSTxy7VFa0jzbVPuKebtj42maaKIs2p2uwDRe_78Dnz0qYu5S2d9fqZyxPdHg9YZYrVmvr60By70OZHchdxn8PowkPyPZ99Td-KxcdrP3BRJA66KywrrXAIOhpQaED66JA5dNZz9KoXohGl1MYAFxp17A9yVnruheYoQA7J-K83hRBWTZsO2J5Wl9vkL-flXSo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Speech-based identification of social groups in a single accent of British English by humans and computers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hanani, Abualsoud ; Russell, Martin ; Carey, Michael J.</creator><creatorcontrib>Hanani, Abualsoud ; Russell, Martin ; Carey, Michael J.</creatorcontrib><description>Classification of social groups within a given accent is a challenging refinement of language identification (LID) and accent/dialect recognition. The 2001 census of England and Wales identifies two main ethnic groups in the city of Birmingham, which it refers to as Asian and white. In this paper LID techniques are applied to the problem of identifying individuals from these two groups who were born in Birmingham and hence speak British English with a Birmingham accent. An Equal Error Rate (EER) of 3.57% is obtained using a LID system which fuses the outputs of several acoustic and phonotactic systems. This performance is much better than expected and compares to an EER of 8.72% achieved by human listeners. The implications of this result for automatic speech recognition are discussed.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781457705380</identifier><identifier>ISBN: 1457705389</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1457705397</identifier><identifier>EISBN: 9781457705373</identifier><identifier>EISBN: 9781457705397</identifier><identifier>EISBN: 1457705370</identifier><identifier>DOI: 10.1109/ICASSP.2011.5947448</identifier><language>eng</language><publisher>IEEE</publisher><subject>accent recognition ; Acoustics ; Adaptation models ; Cities and towns ; Computational modeling ; dialect recognition ; Humans ; Language identification ; Speech ; Support vector machines</subject><ispartof>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, p.4876-4879</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5947448$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5947448$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hanani, Abualsoud</creatorcontrib><creatorcontrib>Russell, Martin</creatorcontrib><creatorcontrib>Carey, Michael J.</creatorcontrib><title>Speech-based identification of social groups in a single accent of British English by humans and computers</title><title>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Classification of social groups within a given accent is a challenging refinement of language identification (LID) and accent/dialect recognition. The 2001 census of England and Wales identifies two main ethnic groups in the city of Birmingham, which it refers to as Asian and white. In this paper LID techniques are applied to the problem of identifying individuals from these two groups who were born in Birmingham and hence speak British English with a Birmingham accent. An Equal Error Rate (EER) of 3.57% is obtained using a LID system which fuses the outputs of several acoustic and phonotactic systems. This performance is much better than expected and compares to an EER of 8.72% achieved by human listeners. The implications of this result for automatic speech recognition are discussed.</description><subject>accent recognition</subject><subject>Acoustics</subject><subject>Adaptation models</subject><subject>Cities and towns</subject><subject>Computational modeling</subject><subject>dialect recognition</subject><subject>Humans</subject><subject>Language identification</subject><subject>Speech</subject><subject>Support vector machines</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781457705380</isbn><isbn>1457705389</isbn><isbn>1457705397</isbn><isbn>9781457705373</isbn><isbn>9781457705397</isbn><isbn>1457705370</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UM1qAjEYTP-g1voEXvICa_P_JcdWtC0ILdhCb_JtTDSiu8tmPfj2Xamdy8DMMDBDyJizCefMPb1Pn5fLz4lgnE-0U6CUvSIPXGkApqWDazIQElzBHfu5ISMH9t-z7JYMuBasMFy5ezLKecd6GAGg3YDslk0IfluUmMOapnWouhSTxy7VFa0jzbVPuKebtj42maaKIs2p2uwDRe_78Dnz0qYu5S2d9fqZyxPdHg9YZYrVmvr60By70OZHchdxn8PowkPyPZ99Td-KxcdrP3BRJA66KywrrXAIOhpQaED66JA5dNZz9KoXohGl1MYAFxp17A9yVnruheYoQA7J-K83hRBWTZsO2J5Wl9vkL-flXSo</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Hanani, Abualsoud</creator><creator>Russell, Martin</creator><creator>Carey, Michael J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201105</creationdate><title>Speech-based identification of social groups in a single accent of British English by humans and computers</title><author>Hanani, Abualsoud ; Russell, Martin ; Carey, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-80b829a75f674a673cf9a09a98c1ac4673f62b35667125a5f109983c1c251a273</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>accent recognition</topic><topic>Acoustics</topic><topic>Adaptation models</topic><topic>Cities and towns</topic><topic>Computational modeling</topic><topic>dialect recognition</topic><topic>Humans</topic><topic>Language identification</topic><topic>Speech</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Hanani, Abualsoud</creatorcontrib><creatorcontrib>Russell, Martin</creatorcontrib><creatorcontrib>Carey, Michael J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hanani, Abualsoud</au><au>Russell, Martin</au><au>Carey, Michael J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Speech-based identification of social groups in a single accent of British English by humans and computers</atitle><btitle>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2011-05</date><risdate>2011</risdate><spage>4876</spage><epage>4879</epage><pages>4876-4879</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781457705380</isbn><isbn>1457705389</isbn><eisbn>1457705397</eisbn><eisbn>9781457705373</eisbn><eisbn>9781457705397</eisbn><eisbn>1457705370</eisbn><abstract>Classification of social groups within a given accent is a challenging refinement of language identification (LID) and accent/dialect recognition. The 2001 census of England and Wales identifies two main ethnic groups in the city of Birmingham, which it refers to as Asian and white. In this paper LID techniques are applied to the problem of identifying individuals from these two groups who were born in Birmingham and hence speak British English with a Birmingham accent. An Equal Error Rate (EER) of 3.57% is obtained using a LID system which fuses the outputs of several acoustic and phonotactic systems. This performance is much better than expected and compares to an EER of 8.72% achieved by human listeners. The implications of this result for automatic speech recognition are discussed.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2011.5947448</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, p.4876-4879 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_5947448 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | accent recognition Acoustics Adaptation models Cities and towns Computational modeling dialect recognition Humans Language identification Speech Support vector machines |
title | Speech-based identification of social groups in a single accent of British English by humans and computers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A50%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Speech-based%20identification%20of%20social%20groups%20in%20a%20single%20accent%20of%20British%20English%20by%20humans%20and%20computers&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Hanani,%20Abualsoud&rft.date=2011-05&rft.spage=4876&rft.epage=4879&rft.pages=4876-4879&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781457705380&rft.isbn_list=1457705389&rft_id=info:doi/10.1109/ICASSP.2011.5947448&rft_dat=%3Cieee_6IE%3E5947448%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457705397&rft.eisbn_list=9781457705373&rft.eisbn_list=9781457705397&rft.eisbn_list=1457705370&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5947448&rfr_iscdi=true |