Speech-based identification of social groups in a single accent of British English by humans and computers

Classification of social groups within a given accent is a challenging refinement of language identification (LID) and accent/dialect recognition. The 2001 census of England and Wales identifies two main ethnic groups in the city of Birmingham, which it refers to as Asian and white. In this paper LI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hanani, Abualsoud, Russell, Martin, Carey, Michael J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4879
container_issue
container_start_page 4876
container_title
container_volume
creator Hanani, Abualsoud
Russell, Martin
Carey, Michael J.
description Classification of social groups within a given accent is a challenging refinement of language identification (LID) and accent/dialect recognition. The 2001 census of England and Wales identifies two main ethnic groups in the city of Birmingham, which it refers to as Asian and white. In this paper LID techniques are applied to the problem of identifying individuals from these two groups who were born in Birmingham and hence speak British English with a Birmingham accent. An Equal Error Rate (EER) of 3.57% is obtained using a LID system which fuses the outputs of several acoustic and phonotactic systems. This performance is much better than expected and compares to an EER of 8.72% achieved by human listeners. The implications of this result for automatic speech recognition are discussed.
doi_str_mv 10.1109/ICASSP.2011.5947448
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5947448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5947448</ieee_id><sourcerecordid>5947448</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-80b829a75f674a673cf9a09a98c1ac4673f62b35667125a5f109983c1c251a273</originalsourceid><addsrcrecordid>eNo1UM1qAjEYTP-g1voEXvICa_P_JcdWtC0ILdhCb_JtTDSiu8tmPfj2Xamdy8DMMDBDyJizCefMPb1Pn5fLz4lgnE-0U6CUvSIPXGkApqWDazIQElzBHfu5ISMH9t-z7JYMuBasMFy5ezLKecd6GAGg3YDslk0IfluUmMOapnWouhSTxy7VFa0jzbVPuKebtj42maaKIs2p2uwDRe_78Dnz0qYu5S2d9fqZyxPdHg9YZYrVmvr60By70OZHchdxn8PowkPyPZ99Td-KxcdrP3BRJA66KywrrXAIOhpQaED66JA5dNZz9KoXohGl1MYAFxp17A9yVnruheYoQA7J-K83hRBWTZsO2J5Wl9vkL-flXSo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Speech-based identification of social groups in a single accent of British English by humans and computers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hanani, Abualsoud ; Russell, Martin ; Carey, Michael J.</creator><creatorcontrib>Hanani, Abualsoud ; Russell, Martin ; Carey, Michael J.</creatorcontrib><description>Classification of social groups within a given accent is a challenging refinement of language identification (LID) and accent/dialect recognition. The 2001 census of England and Wales identifies two main ethnic groups in the city of Birmingham, which it refers to as Asian and white. In this paper LID techniques are applied to the problem of identifying individuals from these two groups who were born in Birmingham and hence speak British English with a Birmingham accent. An Equal Error Rate (EER) of 3.57% is obtained using a LID system which fuses the outputs of several acoustic and phonotactic systems. This performance is much better than expected and compares to an EER of 8.72% achieved by human listeners. The implications of this result for automatic speech recognition are discussed.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781457705380</identifier><identifier>ISBN: 1457705389</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1457705397</identifier><identifier>EISBN: 9781457705373</identifier><identifier>EISBN: 9781457705397</identifier><identifier>EISBN: 1457705370</identifier><identifier>DOI: 10.1109/ICASSP.2011.5947448</identifier><language>eng</language><publisher>IEEE</publisher><subject>accent recognition ; Acoustics ; Adaptation models ; Cities and towns ; Computational modeling ; dialect recognition ; Humans ; Language identification ; Speech ; Support vector machines</subject><ispartof>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, p.4876-4879</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5947448$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5947448$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hanani, Abualsoud</creatorcontrib><creatorcontrib>Russell, Martin</creatorcontrib><creatorcontrib>Carey, Michael J.</creatorcontrib><title>Speech-based identification of social groups in a single accent of British English by humans and computers</title><title>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Classification of social groups within a given accent is a challenging refinement of language identification (LID) and accent/dialect recognition. The 2001 census of England and Wales identifies two main ethnic groups in the city of Birmingham, which it refers to as Asian and white. In this paper LID techniques are applied to the problem of identifying individuals from these two groups who were born in Birmingham and hence speak British English with a Birmingham accent. An Equal Error Rate (EER) of 3.57% is obtained using a LID system which fuses the outputs of several acoustic and phonotactic systems. This performance is much better than expected and compares to an EER of 8.72% achieved by human listeners. The implications of this result for automatic speech recognition are discussed.</description><subject>accent recognition</subject><subject>Acoustics</subject><subject>Adaptation models</subject><subject>Cities and towns</subject><subject>Computational modeling</subject><subject>dialect recognition</subject><subject>Humans</subject><subject>Language identification</subject><subject>Speech</subject><subject>Support vector machines</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781457705380</isbn><isbn>1457705389</isbn><isbn>1457705397</isbn><isbn>9781457705373</isbn><isbn>9781457705397</isbn><isbn>1457705370</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UM1qAjEYTP-g1voEXvICa_P_JcdWtC0ILdhCb_JtTDSiu8tmPfj2Xamdy8DMMDBDyJizCefMPb1Pn5fLz4lgnE-0U6CUvSIPXGkApqWDazIQElzBHfu5ISMH9t-z7JYMuBasMFy5ezLKecd6GAGg3YDslk0IfluUmMOapnWouhSTxy7VFa0jzbVPuKebtj42maaKIs2p2uwDRe_78Dnz0qYu5S2d9fqZyxPdHg9YZYrVmvr60By70OZHchdxn8PowkPyPZ99Td-KxcdrP3BRJA66KywrrXAIOhpQaED66JA5dNZz9KoXohGl1MYAFxp17A9yVnruheYoQA7J-K83hRBWTZsO2J5Wl9vkL-flXSo</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Hanani, Abualsoud</creator><creator>Russell, Martin</creator><creator>Carey, Michael J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201105</creationdate><title>Speech-based identification of social groups in a single accent of British English by humans and computers</title><author>Hanani, Abualsoud ; Russell, Martin ; Carey, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-80b829a75f674a673cf9a09a98c1ac4673f62b35667125a5f109983c1c251a273</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>accent recognition</topic><topic>Acoustics</topic><topic>Adaptation models</topic><topic>Cities and towns</topic><topic>Computational modeling</topic><topic>dialect recognition</topic><topic>Humans</topic><topic>Language identification</topic><topic>Speech</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Hanani, Abualsoud</creatorcontrib><creatorcontrib>Russell, Martin</creatorcontrib><creatorcontrib>Carey, Michael J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hanani, Abualsoud</au><au>Russell, Martin</au><au>Carey, Michael J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Speech-based identification of social groups in a single accent of British English by humans and computers</atitle><btitle>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2011-05</date><risdate>2011</risdate><spage>4876</spage><epage>4879</epage><pages>4876-4879</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781457705380</isbn><isbn>1457705389</isbn><eisbn>1457705397</eisbn><eisbn>9781457705373</eisbn><eisbn>9781457705397</eisbn><eisbn>1457705370</eisbn><abstract>Classification of social groups within a given accent is a challenging refinement of language identification (LID) and accent/dialect recognition. The 2001 census of England and Wales identifies two main ethnic groups in the city of Birmingham, which it refers to as Asian and white. In this paper LID techniques are applied to the problem of identifying individuals from these two groups who were born in Birmingham and hence speak British English with a Birmingham accent. An Equal Error Rate (EER) of 3.57% is obtained using a LID system which fuses the outputs of several acoustic and phonotactic systems. This performance is much better than expected and compares to an EER of 8.72% achieved by human listeners. The implications of this result for automatic speech recognition are discussed.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2011.5947448</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, p.4876-4879
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_5947448
source IEEE Electronic Library (IEL) Conference Proceedings
subjects accent recognition
Acoustics
Adaptation models
Cities and towns
Computational modeling
dialect recognition
Humans
Language identification
Speech
Support vector machines
title Speech-based identification of social groups in a single accent of British English by humans and computers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A50%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Speech-based%20identification%20of%20social%20groups%20in%20a%20single%20accent%20of%20British%20English%20by%20humans%20and%20computers&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Hanani,%20Abualsoud&rft.date=2011-05&rft.spage=4876&rft.epage=4879&rft.pages=4876-4879&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781457705380&rft.isbn_list=1457705389&rft_id=info:doi/10.1109/ICASSP.2011.5947448&rft_dat=%3Cieee_6IE%3E5947448%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457705397&rft.eisbn_list=9781457705373&rft.eisbn_list=9781457705397&rft.eisbn_list=1457705370&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5947448&rfr_iscdi=true