Front-end feature transforms with context filtering for speaker adaptation

Feature-space transforms such as feature-space maximum likelihood linear regression (FMLLR) are very effective speaker adaptation technique, especially on mismatched test data. In this study, we extend the full-rank square matrix of FMLLR to a non-square matrix that uses neighboring feature vectors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jing Huang, Visweswariah, Karthik, Olsen, Peder, Goel, Vaibhava
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4443
container_issue
container_start_page 4440
container_title
container_volume
creator Jing Huang
Visweswariah, Karthik
Olsen, Peder
Goel, Vaibhava
description Feature-space transforms such as feature-space maximum likelihood linear regression (FMLLR) are very effective speaker adaptation technique, especially on mismatched test data. In this study, we extend the full-rank square matrix of FMLLR to a non-square matrix that uses neighboring feature vectors in estimating the adapted central feature vector. Through optimizing an appropriate objective function we aim to filter out and transform features through the correlation of the feature context. We compare to FMLLR that just con sider the current feature vector only. Our experiments are conducted on the automobile data with different speed conditions. Results show that context filtering improves 23% on word error rate over conventional FMLLR on noisy 60mph data with adapted ML model, and 7%/9% improvement over the discriminatively trained FMMI/BMMI models.
doi_str_mv 10.1109/ICASSP.2011.5947339
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5947339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5947339</ieee_id><sourcerecordid>5947339</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8fbe4577c2631eaf1667d8ae65038e915ed8b0d998608c7c4c5c25b2f888b40d3</originalsourceid><addsrcrecordid>eNo1UMlOwzAUNJtEKPmCXvwDCX52vB1RRVlUCaSCxK1ykmcwtEnkGAF_TxBlLnOY0WhmCJkDKwGYvbhdXK7XDyVnAKW0lRbCHpAzqKTWTAqrD0nGhbYFWPZ8RHKrzb9m2DHJQHJWKKjsKcnH8Y1NUFxraTNyt4x9lwrsWurRpY-INEXXjb6Pu5F-hvRKm8mAX4n6sE0YQ_dCJ5GOA7p3jNS1bkguhb47JyfebUfM9zwjT8urx8VNsbq_ngasigBapsL4Gn_LNVwJQOdBKd0ah0oyYdCCxNbUrLXWKGYa3VSNbLisuTfG1BVrxYzM_3IDIm6GGHYufm_2t4gfE9pTWQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Front-end feature transforms with context filtering for speaker adaptation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jing Huang ; Visweswariah, Karthik ; Olsen, Peder ; Goel, Vaibhava</creator><creatorcontrib>Jing Huang ; Visweswariah, Karthik ; Olsen, Peder ; Goel, Vaibhava</creatorcontrib><description>Feature-space transforms such as feature-space maximum likelihood linear regression (FMLLR) are very effective speaker adaptation technique, especially on mismatched test data. In this study, we extend the full-rank square matrix of FMLLR to a non-square matrix that uses neighboring feature vectors in estimating the adapted central feature vector. Through optimizing an appropriate objective function we aim to filter out and transform features through the correlation of the feature context. We compare to FMLLR that just con sider the current feature vector only. Our experiments are conducted on the automobile data with different speed conditions. Results show that context filtering improves 23% on word error rate over conventional FMLLR on noisy 60mph data with adapted ML model, and 7%/9% improvement over the discriminatively trained FMMI/BMMI models.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781457705380</identifier><identifier>ISBN: 1457705389</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1457705397</identifier><identifier>EISBN: 9781457705373</identifier><identifier>EISBN: 9781457705397</identifier><identifier>EISBN: 1457705370</identifier><identifier>DOI: 10.1109/ICASSP.2011.5947339</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Context ; context filtering ; Context modeling ; Data models ; feature-space maximum likelihood linear regression ; Feature-space transforms ; Hidden Markov models ; Noise measurement ; Transforms</subject><ispartof>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, p.4440-4443</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5947339$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5947339$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jing Huang</creatorcontrib><creatorcontrib>Visweswariah, Karthik</creatorcontrib><creatorcontrib>Olsen, Peder</creatorcontrib><creatorcontrib>Goel, Vaibhava</creatorcontrib><title>Front-end feature transforms with context filtering for speaker adaptation</title><title>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Feature-space transforms such as feature-space maximum likelihood linear regression (FMLLR) are very effective speaker adaptation technique, especially on mismatched test data. In this study, we extend the full-rank square matrix of FMLLR to a non-square matrix that uses neighboring feature vectors in estimating the adapted central feature vector. Through optimizing an appropriate objective function we aim to filter out and transform features through the correlation of the feature context. We compare to FMLLR that just con sider the current feature vector only. Our experiments are conducted on the automobile data with different speed conditions. Results show that context filtering improves 23% on word error rate over conventional FMLLR on noisy 60mph data with adapted ML model, and 7%/9% improvement over the discriminatively trained FMMI/BMMI models.</description><subject>Adaptation models</subject><subject>Context</subject><subject>context filtering</subject><subject>Context modeling</subject><subject>Data models</subject><subject>feature-space maximum likelihood linear regression</subject><subject>Feature-space transforms</subject><subject>Hidden Markov models</subject><subject>Noise measurement</subject><subject>Transforms</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781457705380</isbn><isbn>1457705389</isbn><isbn>1457705397</isbn><isbn>9781457705373</isbn><isbn>9781457705397</isbn><isbn>1457705370</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMlOwzAUNJtEKPmCXvwDCX52vB1RRVlUCaSCxK1ykmcwtEnkGAF_TxBlLnOY0WhmCJkDKwGYvbhdXK7XDyVnAKW0lRbCHpAzqKTWTAqrD0nGhbYFWPZ8RHKrzb9m2DHJQHJWKKjsKcnH8Y1NUFxraTNyt4x9lwrsWurRpY-INEXXjb6Pu5F-hvRKm8mAX4n6sE0YQ_dCJ5GOA7p3jNS1bkguhb47JyfebUfM9zwjT8urx8VNsbq_ngasigBapsL4Gn_LNVwJQOdBKd0ah0oyYdCCxNbUrLXWKGYa3VSNbLisuTfG1BVrxYzM_3IDIm6GGHYufm_2t4gfE9pTWQ</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Jing Huang</creator><creator>Visweswariah, Karthik</creator><creator>Olsen, Peder</creator><creator>Goel, Vaibhava</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201105</creationdate><title>Front-end feature transforms with context filtering for speaker adaptation</title><author>Jing Huang ; Visweswariah, Karthik ; Olsen, Peder ; Goel, Vaibhava</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8fbe4577c2631eaf1667d8ae65038e915ed8b0d998608c7c4c5c25b2f888b40d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation models</topic><topic>Context</topic><topic>context filtering</topic><topic>Context modeling</topic><topic>Data models</topic><topic>feature-space maximum likelihood linear regression</topic><topic>Feature-space transforms</topic><topic>Hidden Markov models</topic><topic>Noise measurement</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Jing Huang</creatorcontrib><creatorcontrib>Visweswariah, Karthik</creatorcontrib><creatorcontrib>Olsen, Peder</creatorcontrib><creatorcontrib>Goel, Vaibhava</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jing Huang</au><au>Visweswariah, Karthik</au><au>Olsen, Peder</au><au>Goel, Vaibhava</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Front-end feature transforms with context filtering for speaker adaptation</atitle><btitle>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2011-05</date><risdate>2011</risdate><spage>4440</spage><epage>4443</epage><pages>4440-4443</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781457705380</isbn><isbn>1457705389</isbn><eisbn>1457705397</eisbn><eisbn>9781457705373</eisbn><eisbn>9781457705397</eisbn><eisbn>1457705370</eisbn><abstract>Feature-space transforms such as feature-space maximum likelihood linear regression (FMLLR) are very effective speaker adaptation technique, especially on mismatched test data. In this study, we extend the full-rank square matrix of FMLLR to a non-square matrix that uses neighboring feature vectors in estimating the adapted central feature vector. Through optimizing an appropriate objective function we aim to filter out and transform features through the correlation of the feature context. We compare to FMLLR that just con sider the current feature vector only. Our experiments are conducted on the automobile data with different speed conditions. Results show that context filtering improves 23% on word error rate over conventional FMLLR on noisy 60mph data with adapted ML model, and 7%/9% improvement over the discriminatively trained FMMI/BMMI models.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2011.5947339</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, p.4440-4443
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_5947339
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation models
Context
context filtering
Context modeling
Data models
feature-space maximum likelihood linear regression
Feature-space transforms
Hidden Markov models
Noise measurement
Transforms
title Front-end feature transforms with context filtering for speaker adaptation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A36%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Front-end%20feature%20transforms%20with%20context%20filtering%20for%20speaker%20adaptation&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Jing%20Huang&rft.date=2011-05&rft.spage=4440&rft.epage=4443&rft.pages=4440-4443&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781457705380&rft.isbn_list=1457705389&rft_id=info:doi/10.1109/ICASSP.2011.5947339&rft_dat=%3Cieee_6IE%3E5947339%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457705397&rft.eisbn_list=9781457705373&rft.eisbn_list=9781457705397&rft.eisbn_list=1457705370&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5947339&rfr_iscdi=true