Front-end feature transforms with context filtering for speaker adaptation
Feature-space transforms such as feature-space maximum likelihood linear regression (FMLLR) are very effective speaker adaptation technique, especially on mismatched test data. In this study, we extend the full-rank square matrix of FMLLR to a non-square matrix that uses neighboring feature vectors...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4443 |
---|---|
container_issue | |
container_start_page | 4440 |
container_title | |
container_volume | |
creator | Jing Huang Visweswariah, Karthik Olsen, Peder Goel, Vaibhava |
description | Feature-space transforms such as feature-space maximum likelihood linear regression (FMLLR) are very effective speaker adaptation technique, especially on mismatched test data. In this study, we extend the full-rank square matrix of FMLLR to a non-square matrix that uses neighboring feature vectors in estimating the adapted central feature vector. Through optimizing an appropriate objective function we aim to filter out and transform features through the correlation of the feature context. We compare to FMLLR that just con sider the current feature vector only. Our experiments are conducted on the automobile data with different speed conditions. Results show that context filtering improves 23% on word error rate over conventional FMLLR on noisy 60mph data with adapted ML model, and 7%/9% improvement over the discriminatively trained FMMI/BMMI models. |
doi_str_mv | 10.1109/ICASSP.2011.5947339 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5947339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5947339</ieee_id><sourcerecordid>5947339</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8fbe4577c2631eaf1667d8ae65038e915ed8b0d998608c7c4c5c25b2f888b40d3</originalsourceid><addsrcrecordid>eNo1UMlOwzAUNJtEKPmCXvwDCX52vB1RRVlUCaSCxK1ykmcwtEnkGAF_TxBlLnOY0WhmCJkDKwGYvbhdXK7XDyVnAKW0lRbCHpAzqKTWTAqrD0nGhbYFWPZ8RHKrzb9m2DHJQHJWKKjsKcnH8Y1NUFxraTNyt4x9lwrsWurRpY-INEXXjb6Pu5F-hvRKm8mAX4n6sE0YQ_dCJ5GOA7p3jNS1bkguhb47JyfebUfM9zwjT8urx8VNsbq_ngasigBapsL4Gn_LNVwJQOdBKd0ah0oyYdCCxNbUrLXWKGYa3VSNbLisuTfG1BVrxYzM_3IDIm6GGHYufm_2t4gfE9pTWQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Front-end feature transforms with context filtering for speaker adaptation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jing Huang ; Visweswariah, Karthik ; Olsen, Peder ; Goel, Vaibhava</creator><creatorcontrib>Jing Huang ; Visweswariah, Karthik ; Olsen, Peder ; Goel, Vaibhava</creatorcontrib><description>Feature-space transforms such as feature-space maximum likelihood linear regression (FMLLR) are very effective speaker adaptation technique, especially on mismatched test data. In this study, we extend the full-rank square matrix of FMLLR to a non-square matrix that uses neighboring feature vectors in estimating the adapted central feature vector. Through optimizing an appropriate objective function we aim to filter out and transform features through the correlation of the feature context. We compare to FMLLR that just con sider the current feature vector only. Our experiments are conducted on the automobile data with different speed conditions. Results show that context filtering improves 23% on word error rate over conventional FMLLR on noisy 60mph data with adapted ML model, and 7%/9% improvement over the discriminatively trained FMMI/BMMI models.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781457705380</identifier><identifier>ISBN: 1457705389</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1457705397</identifier><identifier>EISBN: 9781457705373</identifier><identifier>EISBN: 9781457705397</identifier><identifier>EISBN: 1457705370</identifier><identifier>DOI: 10.1109/ICASSP.2011.5947339</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Context ; context filtering ; Context modeling ; Data models ; feature-space maximum likelihood linear regression ; Feature-space transforms ; Hidden Markov models ; Noise measurement ; Transforms</subject><ispartof>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, p.4440-4443</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5947339$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5947339$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jing Huang</creatorcontrib><creatorcontrib>Visweswariah, Karthik</creatorcontrib><creatorcontrib>Olsen, Peder</creatorcontrib><creatorcontrib>Goel, Vaibhava</creatorcontrib><title>Front-end feature transforms with context filtering for speaker adaptation</title><title>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Feature-space transforms such as feature-space maximum likelihood linear regression (FMLLR) are very effective speaker adaptation technique, especially on mismatched test data. In this study, we extend the full-rank square matrix of FMLLR to a non-square matrix that uses neighboring feature vectors in estimating the adapted central feature vector. Through optimizing an appropriate objective function we aim to filter out and transform features through the correlation of the feature context. We compare to FMLLR that just con sider the current feature vector only. Our experiments are conducted on the automobile data with different speed conditions. Results show that context filtering improves 23% on word error rate over conventional FMLLR on noisy 60mph data with adapted ML model, and 7%/9% improvement over the discriminatively trained FMMI/BMMI models.</description><subject>Adaptation models</subject><subject>Context</subject><subject>context filtering</subject><subject>Context modeling</subject><subject>Data models</subject><subject>feature-space maximum likelihood linear regression</subject><subject>Feature-space transforms</subject><subject>Hidden Markov models</subject><subject>Noise measurement</subject><subject>Transforms</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781457705380</isbn><isbn>1457705389</isbn><isbn>1457705397</isbn><isbn>9781457705373</isbn><isbn>9781457705397</isbn><isbn>1457705370</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMlOwzAUNJtEKPmCXvwDCX52vB1RRVlUCaSCxK1ykmcwtEnkGAF_TxBlLnOY0WhmCJkDKwGYvbhdXK7XDyVnAKW0lRbCHpAzqKTWTAqrD0nGhbYFWPZ8RHKrzb9m2DHJQHJWKKjsKcnH8Y1NUFxraTNyt4x9lwrsWurRpY-INEXXjb6Pu5F-hvRKm8mAX4n6sE0YQ_dCJ5GOA7p3jNS1bkguhb47JyfebUfM9zwjT8urx8VNsbq_ngasigBapsL4Gn_LNVwJQOdBKd0ah0oyYdCCxNbUrLXWKGYa3VSNbLisuTfG1BVrxYzM_3IDIm6GGHYufm_2t4gfE9pTWQ</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Jing Huang</creator><creator>Visweswariah, Karthik</creator><creator>Olsen, Peder</creator><creator>Goel, Vaibhava</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201105</creationdate><title>Front-end feature transforms with context filtering for speaker adaptation</title><author>Jing Huang ; Visweswariah, Karthik ; Olsen, Peder ; Goel, Vaibhava</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8fbe4577c2631eaf1667d8ae65038e915ed8b0d998608c7c4c5c25b2f888b40d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation models</topic><topic>Context</topic><topic>context filtering</topic><topic>Context modeling</topic><topic>Data models</topic><topic>feature-space maximum likelihood linear regression</topic><topic>Feature-space transforms</topic><topic>Hidden Markov models</topic><topic>Noise measurement</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Jing Huang</creatorcontrib><creatorcontrib>Visweswariah, Karthik</creatorcontrib><creatorcontrib>Olsen, Peder</creatorcontrib><creatorcontrib>Goel, Vaibhava</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jing Huang</au><au>Visweswariah, Karthik</au><au>Olsen, Peder</au><au>Goel, Vaibhava</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Front-end feature transforms with context filtering for speaker adaptation</atitle><btitle>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2011-05</date><risdate>2011</risdate><spage>4440</spage><epage>4443</epage><pages>4440-4443</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781457705380</isbn><isbn>1457705389</isbn><eisbn>1457705397</eisbn><eisbn>9781457705373</eisbn><eisbn>9781457705397</eisbn><eisbn>1457705370</eisbn><abstract>Feature-space transforms such as feature-space maximum likelihood linear regression (FMLLR) are very effective speaker adaptation technique, especially on mismatched test data. In this study, we extend the full-rank square matrix of FMLLR to a non-square matrix that uses neighboring feature vectors in estimating the adapted central feature vector. Through optimizing an appropriate objective function we aim to filter out and transform features through the correlation of the feature context. We compare to FMLLR that just con sider the current feature vector only. Our experiments are conducted on the automobile data with different speed conditions. Results show that context filtering improves 23% on word error rate over conventional FMLLR on noisy 60mph data with adapted ML model, and 7%/9% improvement over the discriminatively trained FMMI/BMMI models.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2011.5947339</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, p.4440-4443 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_5947339 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptation models Context context filtering Context modeling Data models feature-space maximum likelihood linear regression Feature-space transforms Hidden Markov models Noise measurement Transforms |
title | Front-end feature transforms with context filtering for speaker adaptation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A36%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Front-end%20feature%20transforms%20with%20context%20filtering%20for%20speaker%20adaptation&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Jing%20Huang&rft.date=2011-05&rft.spage=4440&rft.epage=4443&rft.pages=4440-4443&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781457705380&rft.isbn_list=1457705389&rft_id=info:doi/10.1109/ICASSP.2011.5947339&rft_dat=%3Cieee_6IE%3E5947339%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457705397&rft.eisbn_list=9781457705373&rft.eisbn_list=9781457705397&rft.eisbn_list=1457705370&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5947339&rfr_iscdi=true |