MCMC inference of the shape and variability of time-response signals

Signals in response to time-localized events of a common phenomenon tend to exhibit a common shape, but with variable time scale, amplitude, and delay across trials in many domains. We develop a new formulation to learn the common shape and variables from noisy signal samples with a Bayesian signal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Katz-Rogozhnikov, Dmitriy A., Varshney, Kush R., Mojsilovic, Aleksandra, Singh, Moninder
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3959
container_issue
container_start_page 3956
container_title
container_volume
creator Katz-Rogozhnikov, Dmitriy A.
Varshney, Kush R.
Mojsilovic, Aleksandra
Singh, Moninder
description Signals in response to time-localized events of a common phenomenon tend to exhibit a common shape, but with variable time scale, amplitude, and delay across trials in many domains. We develop a new formulation to learn the common shape and variables from noisy signal samples with a Bayesian signal model and a Markov chain Monte Carlo inference scheme involving Gibbs sampling and independent Metropolis-Hastings. Our experiments with generated and real-world data show that the algorithm is robust to missing data, outperforms the existing approaches and produces easily interpretable outputs.
doi_str_mv 10.1109/ICASSP.2011.5947218
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5947218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5947218</ieee_id><sourcerecordid>5947218</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ca60f959c631d6140f3bc1312c4dcc2ad8bf22223b510dd7407333b0cc7aa0093</originalsourceid><addsrcrecordid>eNo1kMtqwzAURNUX1E39Bdn4B-TeK1mWtSzuExJaSAvdBVmPRiVxjGUK-fuKNp3NLM4wDEPIHKFEBHXz3N6uVq8lA8RSqEoybE7IFVZCShBcyVOSMS4VRQUfZyRXsvlnDZyTDAUDWmOlLkke4xck1UxKoTJyt2yXbRF670bXG1fsfTFtXBE3enCF7m3xrcegu7AN0-EXhp2jo4vDvo8pFj57vY3X5MInc_nRZ-T94f6tfaKLl8c0fUEDSjFRo2vwSihTc7RpDnjeGeTITGWNYdo2nWdJvBMI1soKJOe8A2Ok1gCKz8j8rzc459bDGHZ6PKyPh_Af1YlPnA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MCMC inference of the shape and variability of time-response signals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Katz-Rogozhnikov, Dmitriy A. ; Varshney, Kush R. ; Mojsilovic, Aleksandra ; Singh, Moninder</creator><creatorcontrib>Katz-Rogozhnikov, Dmitriy A. ; Varshney, Kush R. ; Mojsilovic, Aleksandra ; Singh, Moninder</creatorcontrib><description>Signals in response to time-localized events of a common phenomenon tend to exhibit a common shape, but with variable time scale, amplitude, and delay across trials in many domains. We develop a new formulation to learn the common shape and variables from noisy signal samples with a Bayesian signal model and a Markov chain Monte Carlo inference scheme involving Gibbs sampling and independent Metropolis-Hastings. Our experiments with generated and real-world data show that the algorithm is robust to missing data, outperforms the existing approaches and produces easily interpretable outputs.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781457705380</identifier><identifier>ISBN: 1457705389</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1457705397</identifier><identifier>EISBN: 9781457705373</identifier><identifier>EISBN: 9781457705397</identifier><identifier>EISBN: 1457705370</identifier><identifier>DOI: 10.1109/ICASSP.2011.5947218</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Companies ; Delay ; Markov chain Monte Carlo ; Markov processes ; multiple alignment ; Outsourcing ; Shape ; Spline ; time-response signal</subject><ispartof>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, p.3956-3959</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5947218$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5947218$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Katz-Rogozhnikov, Dmitriy A.</creatorcontrib><creatorcontrib>Varshney, Kush R.</creatorcontrib><creatorcontrib>Mojsilovic, Aleksandra</creatorcontrib><creatorcontrib>Singh, Moninder</creatorcontrib><title>MCMC inference of the shape and variability of time-response signals</title><title>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Signals in response to time-localized events of a common phenomenon tend to exhibit a common shape, but with variable time scale, amplitude, and delay across trials in many domains. We develop a new formulation to learn the common shape and variables from noisy signal samples with a Bayesian signal model and a Markov chain Monte Carlo inference scheme involving Gibbs sampling and independent Metropolis-Hastings. Our experiments with generated and real-world data show that the algorithm is robust to missing data, outperforms the existing approaches and produces easily interpretable outputs.</description><subject>Bayesian methods</subject><subject>Companies</subject><subject>Delay</subject><subject>Markov chain Monte Carlo</subject><subject>Markov processes</subject><subject>multiple alignment</subject><subject>Outsourcing</subject><subject>Shape</subject><subject>Spline</subject><subject>time-response signal</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781457705380</isbn><isbn>1457705389</isbn><isbn>1457705397</isbn><isbn>9781457705373</isbn><isbn>9781457705397</isbn><isbn>1457705370</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtqwzAURNUX1E39Bdn4B-TeK1mWtSzuExJaSAvdBVmPRiVxjGUK-fuKNp3NLM4wDEPIHKFEBHXz3N6uVq8lA8RSqEoybE7IFVZCShBcyVOSMS4VRQUfZyRXsvlnDZyTDAUDWmOlLkke4xck1UxKoTJyt2yXbRF670bXG1fsfTFtXBE3enCF7m3xrcegu7AN0-EXhp2jo4vDvo8pFj57vY3X5MInc_nRZ-T94f6tfaKLl8c0fUEDSjFRo2vwSihTc7RpDnjeGeTITGWNYdo2nWdJvBMI1soKJOe8A2Ok1gCKz8j8rzc459bDGHZ6PKyPh_Af1YlPnA</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Katz-Rogozhnikov, Dmitriy A.</creator><creator>Varshney, Kush R.</creator><creator>Mojsilovic, Aleksandra</creator><creator>Singh, Moninder</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201105</creationdate><title>MCMC inference of the shape and variability of time-response signals</title><author>Katz-Rogozhnikov, Dmitriy A. ; Varshney, Kush R. ; Mojsilovic, Aleksandra ; Singh, Moninder</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ca60f959c631d6140f3bc1312c4dcc2ad8bf22223b510dd7407333b0cc7aa0093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bayesian methods</topic><topic>Companies</topic><topic>Delay</topic><topic>Markov chain Monte Carlo</topic><topic>Markov processes</topic><topic>multiple alignment</topic><topic>Outsourcing</topic><topic>Shape</topic><topic>Spline</topic><topic>time-response signal</topic><toplevel>online_resources</toplevel><creatorcontrib>Katz-Rogozhnikov, Dmitriy A.</creatorcontrib><creatorcontrib>Varshney, Kush R.</creatorcontrib><creatorcontrib>Mojsilovic, Aleksandra</creatorcontrib><creatorcontrib>Singh, Moninder</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Katz-Rogozhnikov, Dmitriy A.</au><au>Varshney, Kush R.</au><au>Mojsilovic, Aleksandra</au><au>Singh, Moninder</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MCMC inference of the shape and variability of time-response signals</atitle><btitle>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2011-05</date><risdate>2011</risdate><spage>3956</spage><epage>3959</epage><pages>3956-3959</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781457705380</isbn><isbn>1457705389</isbn><eisbn>1457705397</eisbn><eisbn>9781457705373</eisbn><eisbn>9781457705397</eisbn><eisbn>1457705370</eisbn><abstract>Signals in response to time-localized events of a common phenomenon tend to exhibit a common shape, but with variable time scale, amplitude, and delay across trials in many domains. We develop a new formulation to learn the common shape and variables from noisy signal samples with a Bayesian signal model and a Markov chain Monte Carlo inference scheme involving Gibbs sampling and independent Metropolis-Hastings. Our experiments with generated and real-world data show that the algorithm is robust to missing data, outperforms the existing approaches and produces easily interpretable outputs.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2011.5947218</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, p.3956-3959
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_5947218
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Companies
Delay
Markov chain Monte Carlo
Markov processes
multiple alignment
Outsourcing
Shape
Spline
time-response signal
title MCMC inference of the shape and variability of time-response signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MCMC%20inference%20of%20the%20shape%20and%20variability%20of%20time-response%20signals&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Katz-Rogozhnikov,%20Dmitriy%20A.&rft.date=2011-05&rft.spage=3956&rft.epage=3959&rft.pages=3956-3959&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781457705380&rft.isbn_list=1457705389&rft_id=info:doi/10.1109/ICASSP.2011.5947218&rft_dat=%3Cieee_6IE%3E5947218%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457705397&rft.eisbn_list=9781457705373&rft.eisbn_list=9781457705397&rft.eisbn_list=1457705370&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5947218&rfr_iscdi=true