BEMD for expression transformation in face recognition

This work presents a novel methodology for the transformation of facial expressions, to assist face biometrics. It is known that identification using only one image per subject poses a great challenge to recognizers. This is because drastic facial expressions introduce variability, on which the reco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mohammadzade, Hoda, Agrafioti, Foteini, Jiexin Gao, Hatzinakos, Dimitrios
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1504
container_issue
container_start_page 1501
container_title
container_volume
creator Mohammadzade, Hoda
Agrafioti, Foteini
Jiexin Gao
Hatzinakos, Dimitrios
description This work presents a novel methodology for the transformation of facial expressions, to assist face biometrics. It is known that identification using only one image per subject poses a great challenge to recognizers. This is because drastic facial expressions introduce variability, on which the recognizer is not trained. The proposed framework uses only one image per subject to predict intra-class variability, by synthesizing new expressions, which are subsequently used to train the discriminant. The expression of the gallery is transformed using the bivariate empirical mode decomposition (BEMD), which allows for simultaneous analysis of the probe image and a targeted expression mask. We advocate that 2D BEMD is a powerful tool for multi-resolution face analysis. The performance of the proposed framework, tested over a database of 96 individuals, is 90% for an FAR of 1%.
doi_str_mv 10.1109/ICASSP.2011.5946778
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5946778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5946778</ieee_id><sourcerecordid>5946778</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d86c2f46bdbb450556b0315ed67d2eb0e1a17aeb334329ed254ac66c04f75143</originalsourceid><addsrcrecordid>eNo1UMlOwzAUNJtEKPmCXvIDCX7eXnyEUhapCKT2wK2ykxdkRJPKzgH-nlSUuYxmRhqNhrE58AqA25vnxe16_VYJDlBpqwxifcKuQGlErqXFU5YJibYEy9_PWG6x_s9qfs4y0IKXBpS9ZHlKn3yCEYjaZszcLV_ui26IBX3vI6UUhr4Yo-vT5O3ceJChLzrXUBGpGT76cPCu2UXnvhLlR56xzcNys3gqV6-P09hVGQD1WLa1aUSnjG-9V5prbTyXoKk12ArynMABOvJSKikstUIr1xjTcNWhBiVnbP5XG4hou49h5-LP9viA_AUajkr9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>BEMD for expression transformation in face recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mohammadzade, Hoda ; Agrafioti, Foteini ; Jiexin Gao ; Hatzinakos, Dimitrios</creator><creatorcontrib>Mohammadzade, Hoda ; Agrafioti, Foteini ; Jiexin Gao ; Hatzinakos, Dimitrios</creatorcontrib><description>This work presents a novel methodology for the transformation of facial expressions, to assist face biometrics. It is known that identification using only one image per subject poses a great challenge to recognizers. This is because drastic facial expressions introduce variability, on which the recognizer is not trained. The proposed framework uses only one image per subject to predict intra-class variability, by synthesizing new expressions, which are subsequently used to train the discriminant. The expression of the gallery is transformed using the bivariate empirical mode decomposition (BEMD), which allows for simultaneous analysis of the probe image and a targeted expression mask. We advocate that 2D BEMD is a powerful tool for multi-resolution face analysis. The performance of the proposed framework, tested over a database of 96 individuals, is 90% for an FAR of 1%.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781457705380</identifier><identifier>ISBN: 1457705389</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1457705397</identifier><identifier>EISBN: 9781457705373</identifier><identifier>EISBN: 9781457705397</identifier><identifier>EISBN: 1457705370</identifier><identifier>DOI: 10.1109/ICASSP.2011.5946778</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biometrics ; correlation coefficient ; Empirical mode decomposition ; Face ; Face recognition ; Image recognition ; linear discriminant analysis ; Probes ; Video sequences</subject><ispartof>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, p.1501-1504</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5946778$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5946778$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mohammadzade, Hoda</creatorcontrib><creatorcontrib>Agrafioti, Foteini</creatorcontrib><creatorcontrib>Jiexin Gao</creatorcontrib><creatorcontrib>Hatzinakos, Dimitrios</creatorcontrib><title>BEMD for expression transformation in face recognition</title><title>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>This work presents a novel methodology for the transformation of facial expressions, to assist face biometrics. It is known that identification using only one image per subject poses a great challenge to recognizers. This is because drastic facial expressions introduce variability, on which the recognizer is not trained. The proposed framework uses only one image per subject to predict intra-class variability, by synthesizing new expressions, which are subsequently used to train the discriminant. The expression of the gallery is transformed using the bivariate empirical mode decomposition (BEMD), which allows for simultaneous analysis of the probe image and a targeted expression mask. We advocate that 2D BEMD is a powerful tool for multi-resolution face analysis. The performance of the proposed framework, tested over a database of 96 individuals, is 90% for an FAR of 1%.</description><subject>Biometrics</subject><subject>correlation coefficient</subject><subject>Empirical mode decomposition</subject><subject>Face</subject><subject>Face recognition</subject><subject>Image recognition</subject><subject>linear discriminant analysis</subject><subject>Probes</subject><subject>Video sequences</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781457705380</isbn><isbn>1457705389</isbn><isbn>1457705397</isbn><isbn>9781457705373</isbn><isbn>9781457705397</isbn><isbn>1457705370</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMlOwzAUNJtEKPmCXvIDCX7eXnyEUhapCKT2wK2ykxdkRJPKzgH-nlSUuYxmRhqNhrE58AqA25vnxe16_VYJDlBpqwxifcKuQGlErqXFU5YJibYEy9_PWG6x_s9qfs4y0IKXBpS9ZHlKn3yCEYjaZszcLV_ui26IBX3vI6UUhr4Yo-vT5O3ceJChLzrXUBGpGT76cPCu2UXnvhLlR56xzcNys3gqV6-P09hVGQD1WLa1aUSnjG-9V5prbTyXoKk12ArynMABOvJSKikstUIr1xjTcNWhBiVnbP5XG4hou49h5-LP9viA_AUajkr9</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Mohammadzade, Hoda</creator><creator>Agrafioti, Foteini</creator><creator>Jiexin Gao</creator><creator>Hatzinakos, Dimitrios</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201105</creationdate><title>BEMD for expression transformation in face recognition</title><author>Mohammadzade, Hoda ; Agrafioti, Foteini ; Jiexin Gao ; Hatzinakos, Dimitrios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d86c2f46bdbb450556b0315ed67d2eb0e1a17aeb334329ed254ac66c04f75143</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biometrics</topic><topic>correlation coefficient</topic><topic>Empirical mode decomposition</topic><topic>Face</topic><topic>Face recognition</topic><topic>Image recognition</topic><topic>linear discriminant analysis</topic><topic>Probes</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohammadzade, Hoda</creatorcontrib><creatorcontrib>Agrafioti, Foteini</creatorcontrib><creatorcontrib>Jiexin Gao</creatorcontrib><creatorcontrib>Hatzinakos, Dimitrios</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohammadzade, Hoda</au><au>Agrafioti, Foteini</au><au>Jiexin Gao</au><au>Hatzinakos, Dimitrios</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>BEMD for expression transformation in face recognition</atitle><btitle>2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2011-05</date><risdate>2011</risdate><spage>1501</spage><epage>1504</epage><pages>1501-1504</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781457705380</isbn><isbn>1457705389</isbn><eisbn>1457705397</eisbn><eisbn>9781457705373</eisbn><eisbn>9781457705397</eisbn><eisbn>1457705370</eisbn><abstract>This work presents a novel methodology for the transformation of facial expressions, to assist face biometrics. It is known that identification using only one image per subject poses a great challenge to recognizers. This is because drastic facial expressions introduce variability, on which the recognizer is not trained. The proposed framework uses only one image per subject to predict intra-class variability, by synthesizing new expressions, which are subsequently used to train the discriminant. The expression of the gallery is transformed using the bivariate empirical mode decomposition (BEMD), which allows for simultaneous analysis of the probe image and a targeted expression mask. We advocate that 2D BEMD is a powerful tool for multi-resolution face analysis. The performance of the proposed framework, tested over a database of 96 individuals, is 90% for an FAR of 1%.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2011.5946778</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, p.1501-1504
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_5946778
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biometrics
correlation coefficient
Empirical mode decomposition
Face
Face recognition
Image recognition
linear discriminant analysis
Probes
Video sequences
title BEMD for expression transformation in face recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=BEMD%20for%20expression%20transformation%20in%20face%20recognition&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Mohammadzade,%20Hoda&rft.date=2011-05&rft.spage=1501&rft.epage=1504&rft.pages=1501-1504&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781457705380&rft.isbn_list=1457705389&rft_id=info:doi/10.1109/ICASSP.2011.5946778&rft_dat=%3Cieee_6IE%3E5946778%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457705397&rft.eisbn_list=9781457705373&rft.eisbn_list=9781457705397&rft.eisbn_list=1457705370&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5946778&rfr_iscdi=true