Artificial immune system-based classification in class-imbalanced problems

We investigate the effect of the Class Imbalance Problem on the performance of an Artificial Immune System(AIS)-based classification algorithm. Our motivation stems from the fact that the Adaptive Immune System constitutes one of the most sophisticated biological systems which is particularly evolve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sotiropoulos, D. N., Tsihrintzis, G. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue
container_start_page 131
container_title
container_volume
creator Sotiropoulos, D. N.
Tsihrintzis, G. A.
description We investigate the effect of the Class Imbalance Problem on the performance of an Artificial Immune System(AIS)-based classification algorithm. Our motivation stems from the fact that the Adaptive Immune System constitutes one of the most sophisticated biological systems which is particularly evolved in order to continuously address an extremely unbalanced pattern classification problem. That is the "self"/"non-self" discrimination process, consisting in classifying any cell as "self" or "non-self". Our experimentation indicates that the AIS-based classification paradigm has the intrinsic properly in dealing more efficiently with highly skewed datasets than standard pattern classification algorithms such as the Support Vector Machines (SVMs). Specifically, the experimental results presented in this paper provide justifications concerning the superiority of AISbased classification in identifying instances from the minority class.
doi_str_mv 10.1109/EAIS.2011.5945917
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5945917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5945917</ieee_id><sourcerecordid>5945917</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1eb5b8e5a79856fd46a51fa053216b95a91ac951a21f7c68cb5d40b1c30fe89f3</originalsourceid><addsrcrecordid>eNpVkM1qwzAQhFVKoCX1A4Re_AJ2tdaPtUcT0jYl0ENzDytZAhXLCZZ7yNs3Jbl0LsMMH3MYxlbAawCOL5tu-1U3HKBWKBVCe8cKbA3IRkrEFsX9v2z0Ayty_uYXaY1CiUf20U1zDNFFGsqY0s_oy3zOs0-Vpez70g2U8x9AczyOZRyvTRWTpYFGd0FO09EOPuUntgg0ZF_cfMn2r5v9-r3afb5t192uisjnCrxV1nhFLRqlQy81KQjElWhAW1SEQA4VUAOhddo4q3rJLTjBgzcYxJI9X2ej9_5wmmKi6Xy4HSB-AUHtT38</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Artificial immune system-based classification in class-imbalanced problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sotiropoulos, D. N. ; Tsihrintzis, G. A.</creator><creatorcontrib>Sotiropoulos, D. N. ; Tsihrintzis, G. A.</creatorcontrib><description>We investigate the effect of the Class Imbalance Problem on the performance of an Artificial Immune System(AIS)-based classification algorithm. Our motivation stems from the fact that the Adaptive Immune System constitutes one of the most sophisticated biological systems which is particularly evolved in order to continuously address an extremely unbalanced pattern classification problem. That is the "self"/"non-self" discrimination process, consisting in classifying any cell as "self" or "non-self". Our experimentation indicates that the AIS-based classification paradigm has the intrinsic properly in dealing more efficiently with highly skewed datasets than standard pattern classification algorithms such as the Support Vector Machines (SVMs). Specifically, the experimental results presented in this paper provide justifications concerning the superiority of AISbased classification in identifying instances from the minority class.</description><identifier>ISBN: 9781424499786</identifier><identifier>ISBN: 142449978X</identifier><identifier>EISBN: 9781424499793</identifier><identifier>EISBN: 9781424499779</identifier><identifier>EISBN: 1424499798</identifier><identifier>EISBN: 1424499771</identifier><identifier>DOI: 10.1109/EAIS.2011.5945917</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Data mining ; Feature extraction ; Immune system ; Multiple signal classification ; Training ; Training data</subject><ispartof>2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS), 2011, p.131-138</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5945917$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5945917$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sotiropoulos, D. N.</creatorcontrib><creatorcontrib>Tsihrintzis, G. A.</creatorcontrib><title>Artificial immune system-based classification in class-imbalanced problems</title><title>2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS)</title><addtitle>EAIS</addtitle><description>We investigate the effect of the Class Imbalance Problem on the performance of an Artificial Immune System(AIS)-based classification algorithm. Our motivation stems from the fact that the Adaptive Immune System constitutes one of the most sophisticated biological systems which is particularly evolved in order to continuously address an extremely unbalanced pattern classification problem. That is the "self"/"non-self" discrimination process, consisting in classifying any cell as "self" or "non-self". Our experimentation indicates that the AIS-based classification paradigm has the intrinsic properly in dealing more efficiently with highly skewed datasets than standard pattern classification algorithms such as the Support Vector Machines (SVMs). Specifically, the experimental results presented in this paper provide justifications concerning the superiority of AISbased classification in identifying instances from the minority class.</description><subject>Classification algorithms</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Immune system</subject><subject>Multiple signal classification</subject><subject>Training</subject><subject>Training data</subject><isbn>9781424499786</isbn><isbn>142449978X</isbn><isbn>9781424499793</isbn><isbn>9781424499779</isbn><isbn>1424499798</isbn><isbn>1424499771</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1qwzAQhFVKoCX1A4Re_AJ2tdaPtUcT0jYl0ENzDytZAhXLCZZ7yNs3Jbl0LsMMH3MYxlbAawCOL5tu-1U3HKBWKBVCe8cKbA3IRkrEFsX9v2z0Ayty_uYXaY1CiUf20U1zDNFFGsqY0s_oy3zOs0-Vpez70g2U8x9AczyOZRyvTRWTpYFGd0FO09EOPuUntgg0ZF_cfMn2r5v9-r3afb5t192uisjnCrxV1nhFLRqlQy81KQjElWhAW1SEQA4VUAOhddo4q3rJLTjBgzcYxJI9X2ej9_5wmmKi6Xy4HSB-AUHtT38</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Sotiropoulos, D. N.</creator><creator>Tsihrintzis, G. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201104</creationdate><title>Artificial immune system-based classification in class-imbalanced problems</title><author>Sotiropoulos, D. N. ; Tsihrintzis, G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1eb5b8e5a79856fd46a51fa053216b95a91ac951a21f7c68cb5d40b1c30fe89f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classification algorithms</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Immune system</topic><topic>Multiple signal classification</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Sotiropoulos, D. N.</creatorcontrib><creatorcontrib>Tsihrintzis, G. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sotiropoulos, D. N.</au><au>Tsihrintzis, G. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Artificial immune system-based classification in class-imbalanced problems</atitle><btitle>2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS)</btitle><stitle>EAIS</stitle><date>2011-04</date><risdate>2011</risdate><spage>131</spage><epage>138</epage><pages>131-138</pages><isbn>9781424499786</isbn><isbn>142449978X</isbn><eisbn>9781424499793</eisbn><eisbn>9781424499779</eisbn><eisbn>1424499798</eisbn><eisbn>1424499771</eisbn><abstract>We investigate the effect of the Class Imbalance Problem on the performance of an Artificial Immune System(AIS)-based classification algorithm. Our motivation stems from the fact that the Adaptive Immune System constitutes one of the most sophisticated biological systems which is particularly evolved in order to continuously address an extremely unbalanced pattern classification problem. That is the "self"/"non-self" discrimination process, consisting in classifying any cell as "self" or "non-self". Our experimentation indicates that the AIS-based classification paradigm has the intrinsic properly in dealing more efficiently with highly skewed datasets than standard pattern classification algorithms such as the Support Vector Machines (SVMs). Specifically, the experimental results presented in this paper provide justifications concerning the superiority of AISbased classification in identifying instances from the minority class.</abstract><pub>IEEE</pub><doi>10.1109/EAIS.2011.5945917</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424499786
ispartof 2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS), 2011, p.131-138
issn
language eng
recordid cdi_ieee_primary_5945917
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Classification algorithms
Data mining
Feature extraction
Immune system
Multiple signal classification
Training
Training data
title Artificial immune system-based classification in class-imbalanced problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Artificial%20immune%20system-based%20classification%20in%20class-imbalanced%20problems&rft.btitle=2011%20IEEE%20Workshop%20on%20Evolving%20and%20Adaptive%20Intelligent%20Systems%20(EAIS)&rft.au=Sotiropoulos,%20D.%20N.&rft.date=2011-04&rft.spage=131&rft.epage=138&rft.pages=131-138&rft.isbn=9781424499786&rft.isbn_list=142449978X&rft_id=info:doi/10.1109/EAIS.2011.5945917&rft_dat=%3Cieee_6IE%3E5945917%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424499793&rft.eisbn_list=9781424499779&rft.eisbn_list=1424499798&rft.eisbn_list=1424499771&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5945917&rfr_iscdi=true