Artificial immune system-based classification in class-imbalanced problems
We investigate the effect of the Class Imbalance Problem on the performance of an Artificial Immune System(AIS)-based classification algorithm. Our motivation stems from the fact that the Adaptive Immune System constitutes one of the most sophisticated biological systems which is particularly evolve...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | |
container_start_page | 131 |
container_title | |
container_volume | |
creator | Sotiropoulos, D. N. Tsihrintzis, G. A. |
description | We investigate the effect of the Class Imbalance Problem on the performance of an Artificial Immune System(AIS)-based classification algorithm. Our motivation stems from the fact that the Adaptive Immune System constitutes one of the most sophisticated biological systems which is particularly evolved in order to continuously address an extremely unbalanced pattern classification problem. That is the "self"/"non-self" discrimination process, consisting in classifying any cell as "self" or "non-self". Our experimentation indicates that the AIS-based classification paradigm has the intrinsic properly in dealing more efficiently with highly skewed datasets than standard pattern classification algorithms such as the Support Vector Machines (SVMs). Specifically, the experimental results presented in this paper provide justifications concerning the superiority of AISbased classification in identifying instances from the minority class. |
doi_str_mv | 10.1109/EAIS.2011.5945917 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5945917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5945917</ieee_id><sourcerecordid>5945917</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1eb5b8e5a79856fd46a51fa053216b95a91ac951a21f7c68cb5d40b1c30fe89f3</originalsourceid><addsrcrecordid>eNpVkM1qwzAQhFVKoCX1A4Re_AJ2tdaPtUcT0jYl0ENzDytZAhXLCZZ7yNs3Jbl0LsMMH3MYxlbAawCOL5tu-1U3HKBWKBVCe8cKbA3IRkrEFsX9v2z0Ayty_uYXaY1CiUf20U1zDNFFGsqY0s_oy3zOs0-Vpez70g2U8x9AczyOZRyvTRWTpYFGd0FO09EOPuUntgg0ZF_cfMn2r5v9-r3afb5t192uisjnCrxV1nhFLRqlQy81KQjElWhAW1SEQA4VUAOhddo4q3rJLTjBgzcYxJI9X2ej9_5wmmKi6Xy4HSB-AUHtT38</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Artificial immune system-based classification in class-imbalanced problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sotiropoulos, D. N. ; Tsihrintzis, G. A.</creator><creatorcontrib>Sotiropoulos, D. N. ; Tsihrintzis, G. A.</creatorcontrib><description>We investigate the effect of the Class Imbalance Problem on the performance of an Artificial Immune System(AIS)-based classification algorithm. Our motivation stems from the fact that the Adaptive Immune System constitutes one of the most sophisticated biological systems which is particularly evolved in order to continuously address an extremely unbalanced pattern classification problem. That is the "self"/"non-self" discrimination process, consisting in classifying any cell as "self" or "non-self". Our experimentation indicates that the AIS-based classification paradigm has the intrinsic properly in dealing more efficiently with highly skewed datasets than standard pattern classification algorithms such as the Support Vector Machines (SVMs). Specifically, the experimental results presented in this paper provide justifications concerning the superiority of AISbased classification in identifying instances from the minority class.</description><identifier>ISBN: 9781424499786</identifier><identifier>ISBN: 142449978X</identifier><identifier>EISBN: 9781424499793</identifier><identifier>EISBN: 9781424499779</identifier><identifier>EISBN: 1424499798</identifier><identifier>EISBN: 1424499771</identifier><identifier>DOI: 10.1109/EAIS.2011.5945917</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Data mining ; Feature extraction ; Immune system ; Multiple signal classification ; Training ; Training data</subject><ispartof>2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS), 2011, p.131-138</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5945917$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5945917$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sotiropoulos, D. N.</creatorcontrib><creatorcontrib>Tsihrintzis, G. A.</creatorcontrib><title>Artificial immune system-based classification in class-imbalanced problems</title><title>2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS)</title><addtitle>EAIS</addtitle><description>We investigate the effect of the Class Imbalance Problem on the performance of an Artificial Immune System(AIS)-based classification algorithm. Our motivation stems from the fact that the Adaptive Immune System constitutes one of the most sophisticated biological systems which is particularly evolved in order to continuously address an extremely unbalanced pattern classification problem. That is the "self"/"non-self" discrimination process, consisting in classifying any cell as "self" or "non-self". Our experimentation indicates that the AIS-based classification paradigm has the intrinsic properly in dealing more efficiently with highly skewed datasets than standard pattern classification algorithms such as the Support Vector Machines (SVMs). Specifically, the experimental results presented in this paper provide justifications concerning the superiority of AISbased classification in identifying instances from the minority class.</description><subject>Classification algorithms</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Immune system</subject><subject>Multiple signal classification</subject><subject>Training</subject><subject>Training data</subject><isbn>9781424499786</isbn><isbn>142449978X</isbn><isbn>9781424499793</isbn><isbn>9781424499779</isbn><isbn>1424499798</isbn><isbn>1424499771</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1qwzAQhFVKoCX1A4Re_AJ2tdaPtUcT0jYl0ENzDytZAhXLCZZ7yNs3Jbl0LsMMH3MYxlbAawCOL5tu-1U3HKBWKBVCe8cKbA3IRkrEFsX9v2z0Ayty_uYXaY1CiUf20U1zDNFFGsqY0s_oy3zOs0-Vpez70g2U8x9AczyOZRyvTRWTpYFGd0FO09EOPuUntgg0ZF_cfMn2r5v9-r3afb5t192uisjnCrxV1nhFLRqlQy81KQjElWhAW1SEQA4VUAOhddo4q3rJLTjBgzcYxJI9X2ej9_5wmmKi6Xy4HSB-AUHtT38</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Sotiropoulos, D. N.</creator><creator>Tsihrintzis, G. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201104</creationdate><title>Artificial immune system-based classification in class-imbalanced problems</title><author>Sotiropoulos, D. N. ; Tsihrintzis, G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1eb5b8e5a79856fd46a51fa053216b95a91ac951a21f7c68cb5d40b1c30fe89f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classification algorithms</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Immune system</topic><topic>Multiple signal classification</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Sotiropoulos, D. N.</creatorcontrib><creatorcontrib>Tsihrintzis, G. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sotiropoulos, D. N.</au><au>Tsihrintzis, G. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Artificial immune system-based classification in class-imbalanced problems</atitle><btitle>2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS)</btitle><stitle>EAIS</stitle><date>2011-04</date><risdate>2011</risdate><spage>131</spage><epage>138</epage><pages>131-138</pages><isbn>9781424499786</isbn><isbn>142449978X</isbn><eisbn>9781424499793</eisbn><eisbn>9781424499779</eisbn><eisbn>1424499798</eisbn><eisbn>1424499771</eisbn><abstract>We investigate the effect of the Class Imbalance Problem on the performance of an Artificial Immune System(AIS)-based classification algorithm. Our motivation stems from the fact that the Adaptive Immune System constitutes one of the most sophisticated biological systems which is particularly evolved in order to continuously address an extremely unbalanced pattern classification problem. That is the "self"/"non-self" discrimination process, consisting in classifying any cell as "self" or "non-self". Our experimentation indicates that the AIS-based classification paradigm has the intrinsic properly in dealing more efficiently with highly skewed datasets than standard pattern classification algorithms such as the Support Vector Machines (SVMs). Specifically, the experimental results presented in this paper provide justifications concerning the superiority of AISbased classification in identifying instances from the minority class.</abstract><pub>IEEE</pub><doi>10.1109/EAIS.2011.5945917</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424499786 |
ispartof | 2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS), 2011, p.131-138 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5945917 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Classification algorithms Data mining Feature extraction Immune system Multiple signal classification Training Training data |
title | Artificial immune system-based classification in class-imbalanced problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Artificial%20immune%20system-based%20classification%20in%20class-imbalanced%20problems&rft.btitle=2011%20IEEE%20Workshop%20on%20Evolving%20and%20Adaptive%20Intelligent%20Systems%20(EAIS)&rft.au=Sotiropoulos,%20D.%20N.&rft.date=2011-04&rft.spage=131&rft.epage=138&rft.pages=131-138&rft.isbn=9781424499786&rft.isbn_list=142449978X&rft_id=info:doi/10.1109/EAIS.2011.5945917&rft_dat=%3Cieee_6IE%3E5945917%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424499793&rft.eisbn_list=9781424499779&rft.eisbn_list=1424499798&rft.eisbn_list=1424499771&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5945917&rfr_iscdi=true |