Worst-case performance optimization for spherical microphone array modal beamformers
The performance of conventional spherical microphone array modal beamformers is known to degrade in the presence of array errors. White noise gain control has been widely used to control the robustness of modal beamformers, but it is not clear how to properly choose the white noise gain parameters b...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | |
container_start_page | 31 |
container_title | |
container_volume | |
creator | Haohai Sun Shefeng Yan Svensson, U. P. |
description | The performance of conventional spherical microphone array modal beamformers is known to degrade in the presence of array errors. White noise gain control has been widely used to control the robustness of modal beamformers, but it is not clear how to properly choose the white noise gain parameters based on the level of array errors. In this paper, a worst-case performance optimization approach is formulated for the spherical array minimum-sidelobe modal beamformer to improve its robustness against random errors occurring in practice, thus the optimal performance can be obtained based on the known maximum level of array errors. The robust optimal modal beamforming problem is reformulated as a tractable convex optimization within the spherical harmonics framework. Compared with conventional element-space approaches, the proposed modal beamforming method enjoys lower optimization complexity and higher flexibility in beam steering. |
doi_str_mv | 10.1109/HSCMA.2011.5942405 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5942405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5942405</ieee_id><sourcerecordid>5942405</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-6b935c0b70d95f565d32aa666272400359a873845f2c7fb915dd02e2e6bfd8073</originalsourceid><addsrcrecordid>eNpVUM1KxDAYjIigrH0BveQFWvPTJM1xWdQVVjxY8LikyRc2smlK0sv69Fbcy85lmIEZmEHogZKGUqKftp-b93XDCKWN0C1ribhClVYdbYVSROuOXV9oJW5RVco3WSClpi27Q_1XymWurSmAJ8g-5WhGCzhNc4jhx8whjXhxcZkOkIM1RxyDzWk6pBGwydmccExusQcw8S8OudyjG2-OBaozr1D_8txvtvXu4_Vts97VQZO5loPmwpJBEaeFF1I4zoyRUjK1bCFcaNMp3rXCM6v8oKlwjjBgIAfvOqL4Cj3-1wYA2E85RJNP-_MV_BdWFlML</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Worst-case performance optimization for spherical microphone array modal beamformers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Haohai Sun ; Shefeng Yan ; Svensson, U. P.</creator><creatorcontrib>Haohai Sun ; Shefeng Yan ; Svensson, U. P.</creatorcontrib><description>The performance of conventional spherical microphone array modal beamformers is known to degrade in the presence of array errors. White noise gain control has been widely used to control the robustness of modal beamformers, but it is not clear how to properly choose the white noise gain parameters based on the level of array errors. In this paper, a worst-case performance optimization approach is formulated for the spherical array minimum-sidelobe modal beamformer to improve its robustness against random errors occurring in practice, thus the optimal performance can be obtained based on the known maximum level of array errors. The robust optimal modal beamforming problem is reformulated as a tractable convex optimization within the spherical harmonics framework. Compared with conventional element-space approaches, the proposed modal beamforming method enjoys lower optimization complexity and higher flexibility in beam steering.</description><identifier>ISBN: 9781457709975</identifier><identifier>ISBN: 145770997X</identifier><identifier>EISBN: 9781457709982</identifier><identifier>EISBN: 1457709996</identifier><identifier>EISBN: 9781457709999</identifier><identifier>EISBN: 1457709988</identifier><identifier>DOI: 10.1109/HSCMA.2011.5942405</identifier><language>eng</language><publisher>IEEE</publisher><subject>Array signal processing ; beamforming ; Harmonic analysis ; Manifolds ; Microphone arrays ; Optimization ; Robustness ; spherical harmonics ; Spherical microphone array ; worst-case performance optimization</subject><ispartof>2011 Joint Workshop on Hands-free Speech Communication and Microphone Arrays, 2011, p.31-35</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5942405$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5942405$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haohai Sun</creatorcontrib><creatorcontrib>Shefeng Yan</creatorcontrib><creatorcontrib>Svensson, U. P.</creatorcontrib><title>Worst-case performance optimization for spherical microphone array modal beamformers</title><title>2011 Joint Workshop on Hands-free Speech Communication and Microphone Arrays</title><addtitle>HSCMA</addtitle><description>The performance of conventional spherical microphone array modal beamformers is known to degrade in the presence of array errors. White noise gain control has been widely used to control the robustness of modal beamformers, but it is not clear how to properly choose the white noise gain parameters based on the level of array errors. In this paper, a worst-case performance optimization approach is formulated for the spherical array minimum-sidelobe modal beamformer to improve its robustness against random errors occurring in practice, thus the optimal performance can be obtained based on the known maximum level of array errors. The robust optimal modal beamforming problem is reformulated as a tractable convex optimization within the spherical harmonics framework. Compared with conventional element-space approaches, the proposed modal beamforming method enjoys lower optimization complexity and higher flexibility in beam steering.</description><subject>Array signal processing</subject><subject>beamforming</subject><subject>Harmonic analysis</subject><subject>Manifolds</subject><subject>Microphone arrays</subject><subject>Optimization</subject><subject>Robustness</subject><subject>spherical harmonics</subject><subject>Spherical microphone array</subject><subject>worst-case performance optimization</subject><isbn>9781457709975</isbn><isbn>145770997X</isbn><isbn>9781457709982</isbn><isbn>1457709996</isbn><isbn>9781457709999</isbn><isbn>1457709988</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUM1KxDAYjIigrH0BveQFWvPTJM1xWdQVVjxY8LikyRc2smlK0sv69Fbcy85lmIEZmEHogZKGUqKftp-b93XDCKWN0C1ribhClVYdbYVSROuOXV9oJW5RVco3WSClpi27Q_1XymWurSmAJ8g-5WhGCzhNc4jhx8whjXhxcZkOkIM1RxyDzWk6pBGwydmccExusQcw8S8OudyjG2-OBaozr1D_8txvtvXu4_Vts97VQZO5loPmwpJBEaeFF1I4zoyRUjK1bCFcaNMp3rXCM6v8oKlwjjBgIAfvOqL4Cj3-1wYA2E85RJNP-_MV_BdWFlML</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Haohai Sun</creator><creator>Shefeng Yan</creator><creator>Svensson, U. P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201105</creationdate><title>Worst-case performance optimization for spherical microphone array modal beamformers</title><author>Haohai Sun ; Shefeng Yan ; Svensson, U. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-6b935c0b70d95f565d32aa666272400359a873845f2c7fb915dd02e2e6bfd8073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Array signal processing</topic><topic>beamforming</topic><topic>Harmonic analysis</topic><topic>Manifolds</topic><topic>Microphone arrays</topic><topic>Optimization</topic><topic>Robustness</topic><topic>spherical harmonics</topic><topic>Spherical microphone array</topic><topic>worst-case performance optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Haohai Sun</creatorcontrib><creatorcontrib>Shefeng Yan</creatorcontrib><creatorcontrib>Svensson, U. P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haohai Sun</au><au>Shefeng Yan</au><au>Svensson, U. P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Worst-case performance optimization for spherical microphone array modal beamformers</atitle><btitle>2011 Joint Workshop on Hands-free Speech Communication and Microphone Arrays</btitle><stitle>HSCMA</stitle><date>2011-05</date><risdate>2011</risdate><spage>31</spage><epage>35</epage><pages>31-35</pages><isbn>9781457709975</isbn><isbn>145770997X</isbn><eisbn>9781457709982</eisbn><eisbn>1457709996</eisbn><eisbn>9781457709999</eisbn><eisbn>1457709988</eisbn><abstract>The performance of conventional spherical microphone array modal beamformers is known to degrade in the presence of array errors. White noise gain control has been widely used to control the robustness of modal beamformers, but it is not clear how to properly choose the white noise gain parameters based on the level of array errors. In this paper, a worst-case performance optimization approach is formulated for the spherical array minimum-sidelobe modal beamformer to improve its robustness against random errors occurring in practice, thus the optimal performance can be obtained based on the known maximum level of array errors. The robust optimal modal beamforming problem is reformulated as a tractable convex optimization within the spherical harmonics framework. Compared with conventional element-space approaches, the proposed modal beamforming method enjoys lower optimization complexity and higher flexibility in beam steering.</abstract><pub>IEEE</pub><doi>10.1109/HSCMA.2011.5942405</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457709975 |
ispartof | 2011 Joint Workshop on Hands-free Speech Communication and Microphone Arrays, 2011, p.31-35 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5942405 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Array signal processing beamforming Harmonic analysis Manifolds Microphone arrays Optimization Robustness spherical harmonics Spherical microphone array worst-case performance optimization |
title | Worst-case performance optimization for spherical microphone array modal beamformers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Worst-case%20performance%20optimization%20for%20spherical%20microphone%20array%20modal%20beamformers&rft.btitle=2011%20Joint%20Workshop%20on%20Hands-free%20Speech%20Communication%20and%20Microphone%20Arrays&rft.au=Haohai%20Sun&rft.date=2011-05&rft.spage=31&rft.epage=35&rft.pages=31-35&rft.isbn=9781457709975&rft.isbn_list=145770997X&rft_id=info:doi/10.1109/HSCMA.2011.5942405&rft_dat=%3Cieee_6IE%3E5942405%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457709982&rft.eisbn_list=1457709996&rft.eisbn_list=9781457709999&rft.eisbn_list=1457709988&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5942405&rfr_iscdi=true |