Worst-case performance optimization for spherical microphone array modal beamformers

The performance of conventional spherical microphone array modal beamformers is known to degrade in the presence of array errors. White noise gain control has been widely used to control the robustness of modal beamformers, but it is not clear how to properly choose the white noise gain parameters b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Haohai Sun, Shefeng Yan, Svensson, U. P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue
container_start_page 31
container_title
container_volume
creator Haohai Sun
Shefeng Yan
Svensson, U. P.
description The performance of conventional spherical microphone array modal beamformers is known to degrade in the presence of array errors. White noise gain control has been widely used to control the robustness of modal beamformers, but it is not clear how to properly choose the white noise gain parameters based on the level of array errors. In this paper, a worst-case performance optimization approach is formulated for the spherical array minimum-sidelobe modal beamformer to improve its robustness against random errors occurring in practice, thus the optimal performance can be obtained based on the known maximum level of array errors. The robust optimal modal beamforming problem is reformulated as a tractable convex optimization within the spherical harmonics framework. Compared with conventional element-space approaches, the proposed modal beamforming method enjoys lower optimization complexity and higher flexibility in beam steering.
doi_str_mv 10.1109/HSCMA.2011.5942405
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5942405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5942405</ieee_id><sourcerecordid>5942405</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-6b935c0b70d95f565d32aa666272400359a873845f2c7fb915dd02e2e6bfd8073</originalsourceid><addsrcrecordid>eNpVUM1KxDAYjIigrH0BveQFWvPTJM1xWdQVVjxY8LikyRc2smlK0sv69Fbcy85lmIEZmEHogZKGUqKftp-b93XDCKWN0C1ribhClVYdbYVSROuOXV9oJW5RVco3WSClpi27Q_1XymWurSmAJ8g-5WhGCzhNc4jhx8whjXhxcZkOkIM1RxyDzWk6pBGwydmccExusQcw8S8OudyjG2-OBaozr1D_8txvtvXu4_Vts97VQZO5loPmwpJBEaeFF1I4zoyRUjK1bCFcaNMp3rXCM6v8oKlwjjBgIAfvOqL4Cj3-1wYA2E85RJNP-_MV_BdWFlML</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Worst-case performance optimization for spherical microphone array modal beamformers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Haohai Sun ; Shefeng Yan ; Svensson, U. P.</creator><creatorcontrib>Haohai Sun ; Shefeng Yan ; Svensson, U. P.</creatorcontrib><description>The performance of conventional spherical microphone array modal beamformers is known to degrade in the presence of array errors. White noise gain control has been widely used to control the robustness of modal beamformers, but it is not clear how to properly choose the white noise gain parameters based on the level of array errors. In this paper, a worst-case performance optimization approach is formulated for the spherical array minimum-sidelobe modal beamformer to improve its robustness against random errors occurring in practice, thus the optimal performance can be obtained based on the known maximum level of array errors. The robust optimal modal beamforming problem is reformulated as a tractable convex optimization within the spherical harmonics framework. Compared with conventional element-space approaches, the proposed modal beamforming method enjoys lower optimization complexity and higher flexibility in beam steering.</description><identifier>ISBN: 9781457709975</identifier><identifier>ISBN: 145770997X</identifier><identifier>EISBN: 9781457709982</identifier><identifier>EISBN: 1457709996</identifier><identifier>EISBN: 9781457709999</identifier><identifier>EISBN: 1457709988</identifier><identifier>DOI: 10.1109/HSCMA.2011.5942405</identifier><language>eng</language><publisher>IEEE</publisher><subject>Array signal processing ; beamforming ; Harmonic analysis ; Manifolds ; Microphone arrays ; Optimization ; Robustness ; spherical harmonics ; Spherical microphone array ; worst-case performance optimization</subject><ispartof>2011 Joint Workshop on Hands-free Speech Communication and Microphone Arrays, 2011, p.31-35</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5942405$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5942405$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haohai Sun</creatorcontrib><creatorcontrib>Shefeng Yan</creatorcontrib><creatorcontrib>Svensson, U. P.</creatorcontrib><title>Worst-case performance optimization for spherical microphone array modal beamformers</title><title>2011 Joint Workshop on Hands-free Speech Communication and Microphone Arrays</title><addtitle>HSCMA</addtitle><description>The performance of conventional spherical microphone array modal beamformers is known to degrade in the presence of array errors. White noise gain control has been widely used to control the robustness of modal beamformers, but it is not clear how to properly choose the white noise gain parameters based on the level of array errors. In this paper, a worst-case performance optimization approach is formulated for the spherical array minimum-sidelobe modal beamformer to improve its robustness against random errors occurring in practice, thus the optimal performance can be obtained based on the known maximum level of array errors. The robust optimal modal beamforming problem is reformulated as a tractable convex optimization within the spherical harmonics framework. Compared with conventional element-space approaches, the proposed modal beamforming method enjoys lower optimization complexity and higher flexibility in beam steering.</description><subject>Array signal processing</subject><subject>beamforming</subject><subject>Harmonic analysis</subject><subject>Manifolds</subject><subject>Microphone arrays</subject><subject>Optimization</subject><subject>Robustness</subject><subject>spherical harmonics</subject><subject>Spherical microphone array</subject><subject>worst-case performance optimization</subject><isbn>9781457709975</isbn><isbn>145770997X</isbn><isbn>9781457709982</isbn><isbn>1457709996</isbn><isbn>9781457709999</isbn><isbn>1457709988</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUM1KxDAYjIigrH0BveQFWvPTJM1xWdQVVjxY8LikyRc2smlK0sv69Fbcy85lmIEZmEHogZKGUqKftp-b93XDCKWN0C1ribhClVYdbYVSROuOXV9oJW5RVco3WSClpi27Q_1XymWurSmAJ8g-5WhGCzhNc4jhx8whjXhxcZkOkIM1RxyDzWk6pBGwydmccExusQcw8S8OudyjG2-OBaozr1D_8txvtvXu4_Vts97VQZO5loPmwpJBEaeFF1I4zoyRUjK1bCFcaNMp3rXCM6v8oKlwjjBgIAfvOqL4Cj3-1wYA2E85RJNP-_MV_BdWFlML</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Haohai Sun</creator><creator>Shefeng Yan</creator><creator>Svensson, U. P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201105</creationdate><title>Worst-case performance optimization for spherical microphone array modal beamformers</title><author>Haohai Sun ; Shefeng Yan ; Svensson, U. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-6b935c0b70d95f565d32aa666272400359a873845f2c7fb915dd02e2e6bfd8073</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Array signal processing</topic><topic>beamforming</topic><topic>Harmonic analysis</topic><topic>Manifolds</topic><topic>Microphone arrays</topic><topic>Optimization</topic><topic>Robustness</topic><topic>spherical harmonics</topic><topic>Spherical microphone array</topic><topic>worst-case performance optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Haohai Sun</creatorcontrib><creatorcontrib>Shefeng Yan</creatorcontrib><creatorcontrib>Svensson, U. P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haohai Sun</au><au>Shefeng Yan</au><au>Svensson, U. P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Worst-case performance optimization for spherical microphone array modal beamformers</atitle><btitle>2011 Joint Workshop on Hands-free Speech Communication and Microphone Arrays</btitle><stitle>HSCMA</stitle><date>2011-05</date><risdate>2011</risdate><spage>31</spage><epage>35</epage><pages>31-35</pages><isbn>9781457709975</isbn><isbn>145770997X</isbn><eisbn>9781457709982</eisbn><eisbn>1457709996</eisbn><eisbn>9781457709999</eisbn><eisbn>1457709988</eisbn><abstract>The performance of conventional spherical microphone array modal beamformers is known to degrade in the presence of array errors. White noise gain control has been widely used to control the robustness of modal beamformers, but it is not clear how to properly choose the white noise gain parameters based on the level of array errors. In this paper, a worst-case performance optimization approach is formulated for the spherical array minimum-sidelobe modal beamformer to improve its robustness against random errors occurring in practice, thus the optimal performance can be obtained based on the known maximum level of array errors. The robust optimal modal beamforming problem is reformulated as a tractable convex optimization within the spherical harmonics framework. Compared with conventional element-space approaches, the proposed modal beamforming method enjoys lower optimization complexity and higher flexibility in beam steering.</abstract><pub>IEEE</pub><doi>10.1109/HSCMA.2011.5942405</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457709975
ispartof 2011 Joint Workshop on Hands-free Speech Communication and Microphone Arrays, 2011, p.31-35
issn
language eng
recordid cdi_ieee_primary_5942405
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Array signal processing
beamforming
Harmonic analysis
Manifolds
Microphone arrays
Optimization
Robustness
spherical harmonics
Spherical microphone array
worst-case performance optimization
title Worst-case performance optimization for spherical microphone array modal beamformers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Worst-case%20performance%20optimization%20for%20spherical%20microphone%20array%20modal%20beamformers&rft.btitle=2011%20Joint%20Workshop%20on%20Hands-free%20Speech%20Communication%20and%20Microphone%20Arrays&rft.au=Haohai%20Sun&rft.date=2011-05&rft.spage=31&rft.epage=35&rft.pages=31-35&rft.isbn=9781457709975&rft.isbn_list=145770997X&rft_id=info:doi/10.1109/HSCMA.2011.5942405&rft_dat=%3Cieee_6IE%3E5942405%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457709982&rft.eisbn_list=1457709996&rft.eisbn_list=9781457709999&rft.eisbn_list=1457709988&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5942405&rfr_iscdi=true