Impact of nanomanufacturing flow on systematic yield losses in nanoscale fabrics

Reliable and scalable manufacturing of nanofabrics entails significant challenges. Scalable nanomanufacturing approaches that employ the use of lithographic masks in conjunction with nanofabrication based on self-assembly have been proposed. A bottom-up fabrication of nanoelectronic circuits is expe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vijayakumar, Priyamvada, Narayanan, Pritish, Koren, Israel, Mani Krishna, C., Moritz, Csaba Andras
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue
container_start_page 181
container_title
container_volume
creator Vijayakumar, Priyamvada
Narayanan, Pritish
Koren, Israel
Mani Krishna, C.
Moritz, Csaba Andras
description Reliable and scalable manufacturing of nanofabrics entails significant challenges. Scalable nanomanufacturing approaches that employ the use of lithographic masks in conjunction with nanofabrication based on self-assembly have been proposed. A bottom-up fabrication of nanoelectronic circuits is expected to be subject to various defects and identifying the types of defects that may occur during each step of a manufacturing pathway is essential in any attempt to achieve reliable manufacturing. The paper proposes a methodology for analyzing the sources of defects in a nano-manufacturing flow and estimating the resulting systematic yield loss. This methodology allows analyzing the impact of the fabrication process on the systematic yield. It integrates physical fabric considerations, manufacturing sequences and the resulting defect scenarios. This is in contrast to most current approaches that use conventional defect models and assume constant defect rates without analyzing the manufacturing pathway to determine the sources of defects and their probabilities (or rates). While the focus of the paper is on estimating the mask overlay-limited yield for the NASIC nano-fabric, the proposed approach can be easily adapted to suit other structured nano-fabrics.
doi_str_mv 10.1109/NANOARCH.2011.5941502
format Conference Proceeding
fullrecord <record><control><sourceid>acm_6IE</sourceid><recordid>TN_cdi_ieee_primary_5941502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5941502</ieee_id><sourcerecordid>acm_books_10_1109_NANOARCH_2011_5941502</sourcerecordid><originalsourceid>FETCH-LOGICAL-a229t-f36eb41c14a992c412d03b1bb8322c68175fc1e175c699c16bb83f2d068b1daa3</originalsourceid><addsrcrecordid>eNqVkNtKAzEQhuMJrLVPIEJeYNdMks0ml6VYWyitiF6HJE1kdQ9ls0X69m5tK946N8PwzT8wH0L3QFIAoh6W4-Vq_DKZpZQApJnikBF6hkYql8CzPCdKcX6OBpTRPJGUigt0cwIsv_wFIK_RKMYP0pcQiik5QM_zamNch5uAa1M3lam3oZ-3bVG_41A2X7ipcdzFzlemKxzeFb5c47KJ0Udc1D-h6EzpcTC2LVy8RVfBlNGPjn2I3qaPr5NZslg9zSfjRWIoVV0SmPCWgwNulKKOA10TZsFaySh1QkKeBQe-b04o5UDsSeiXhLSwNoYN0d3hbuG915u2qEy700c5PU0P1LhK26b5jBqI3tvUJ5t6b_NPgP8roPtnfWDfZ3JyfA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Impact of nanomanufacturing flow on systematic yield losses in nanoscale fabrics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vijayakumar, Priyamvada ; Narayanan, Pritish ; Koren, Israel ; Mani Krishna, C. ; Moritz, Csaba Andras</creator><creatorcontrib>Vijayakumar, Priyamvada ; Narayanan, Pritish ; Koren, Israel ; Mani Krishna, C. ; Moritz, Csaba Andras</creatorcontrib><description>Reliable and scalable manufacturing of nanofabrics entails significant challenges. Scalable nanomanufacturing approaches that employ the use of lithographic masks in conjunction with nanofabrication based on self-assembly have been proposed. A bottom-up fabrication of nanoelectronic circuits is expected to be subject to various defects and identifying the types of defects that may occur during each step of a manufacturing pathway is essential in any attempt to achieve reliable manufacturing. The paper proposes a methodology for analyzing the sources of defects in a nano-manufacturing flow and estimating the resulting systematic yield loss. This methodology allows analyzing the impact of the fabrication process on the systematic yield. It integrates physical fabric considerations, manufacturing sequences and the resulting defect scenarios. This is in contrast to most current approaches that use conventional defect models and assume constant defect rates without analyzing the manufacturing pathway to determine the sources of defects and their probabilities (or rates). While the focus of the paper is on estimating the mask overlay-limited yield for the NASIC nano-fabric, the proposed approach can be easily adapted to suit other structured nano-fabrics.</description><identifier>ISSN: 2327-8218</identifier><identifier>ISBN: 1457709937</identifier><identifier>ISBN: 9781457709937</identifier><identifier>EISSN: 2327-8226</identifier><identifier>EISBN: 9781457709944</identifier><identifier>EISBN: 1457709945</identifier><identifier>EISBN: 9781457709951</identifier><identifier>EISBN: 1457709953</identifier><identifier>DOI: 10.1109/NANOARCH.2011.5941502</identifier><language>eng</language><publisher>Washington, DC, USA: IEEE Computer Society</publisher><subject>Applied computing -- Enterprise computing ; Applied computing -- Operations research -- Industry and manufacturing ; Applied computing -- Physical sciences and engineering -- Electronics ; CMOS integrated circuits ; Fabrics ; Manufacturing ; mask alignment ; mask offset ; Metals ; Nanoscale devices ; Nanowires ; overlay ; Systematics ; yield</subject><ispartof>2011 IEEE/ACM International Symposium on Nanoscale Architectures, 2011, p.181-188</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5941502$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5941502$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vijayakumar, Priyamvada</creatorcontrib><creatorcontrib>Narayanan, Pritish</creatorcontrib><creatorcontrib>Koren, Israel</creatorcontrib><creatorcontrib>Mani Krishna, C.</creatorcontrib><creatorcontrib>Moritz, Csaba Andras</creatorcontrib><title>Impact of nanomanufacturing flow on systematic yield losses in nanoscale fabrics</title><title>2011 IEEE/ACM International Symposium on Nanoscale Architectures</title><addtitle>NANOARCH</addtitle><description>Reliable and scalable manufacturing of nanofabrics entails significant challenges. Scalable nanomanufacturing approaches that employ the use of lithographic masks in conjunction with nanofabrication based on self-assembly have been proposed. A bottom-up fabrication of nanoelectronic circuits is expected to be subject to various defects and identifying the types of defects that may occur during each step of a manufacturing pathway is essential in any attempt to achieve reliable manufacturing. The paper proposes a methodology for analyzing the sources of defects in a nano-manufacturing flow and estimating the resulting systematic yield loss. This methodology allows analyzing the impact of the fabrication process on the systematic yield. It integrates physical fabric considerations, manufacturing sequences and the resulting defect scenarios. This is in contrast to most current approaches that use conventional defect models and assume constant defect rates without analyzing the manufacturing pathway to determine the sources of defects and their probabilities (or rates). While the focus of the paper is on estimating the mask overlay-limited yield for the NASIC nano-fabric, the proposed approach can be easily adapted to suit other structured nano-fabrics.</description><subject>Applied computing -- Enterprise computing</subject><subject>Applied computing -- Operations research -- Industry and manufacturing</subject><subject>Applied computing -- Physical sciences and engineering -- Electronics</subject><subject>CMOS integrated circuits</subject><subject>Fabrics</subject><subject>Manufacturing</subject><subject>mask alignment</subject><subject>mask offset</subject><subject>Metals</subject><subject>Nanoscale devices</subject><subject>Nanowires</subject><subject>overlay</subject><subject>Systematics</subject><subject>yield</subject><issn>2327-8218</issn><issn>2327-8226</issn><isbn>1457709937</isbn><isbn>9781457709937</isbn><isbn>9781457709944</isbn><isbn>1457709945</isbn><isbn>9781457709951</isbn><isbn>1457709953</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNqVkNtKAzEQhuMJrLVPIEJeYNdMks0ml6VYWyitiF6HJE1kdQ9ls0X69m5tK946N8PwzT8wH0L3QFIAoh6W4-Vq_DKZpZQApJnikBF6hkYql8CzPCdKcX6OBpTRPJGUigt0cwIsv_wFIK_RKMYP0pcQiik5QM_zamNch5uAa1M3lam3oZ-3bVG_41A2X7ipcdzFzlemKxzeFb5c47KJ0Udc1D-h6EzpcTC2LVy8RVfBlNGPjn2I3qaPr5NZslg9zSfjRWIoVV0SmPCWgwNulKKOA10TZsFaySh1QkKeBQe-b04o5UDsSeiXhLSwNoYN0d3hbuG915u2qEy700c5PU0P1LhK26b5jBqI3tvUJ5t6b_NPgP8roPtnfWDfZ3JyfA</recordid><startdate>20110608</startdate><enddate>20110608</enddate><creator>Vijayakumar, Priyamvada</creator><creator>Narayanan, Pritish</creator><creator>Koren, Israel</creator><creator>Mani Krishna, C.</creator><creator>Moritz, Csaba Andras</creator><general>IEEE Computer Society</general><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20110608</creationdate><title>Impact of nanomanufacturing flow on systematic yield losses in nanoscale fabrics</title><author>Vijayakumar, Priyamvada ; Narayanan, Pritish ; Koren, Israel ; Mani Krishna, C. ; Moritz, Csaba Andras</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a229t-f36eb41c14a992c412d03b1bb8322c68175fc1e175c699c16bb83f2d068b1daa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied computing -- Enterprise computing</topic><topic>Applied computing -- Operations research -- Industry and manufacturing</topic><topic>Applied computing -- Physical sciences and engineering -- Electronics</topic><topic>CMOS integrated circuits</topic><topic>Fabrics</topic><topic>Manufacturing</topic><topic>mask alignment</topic><topic>mask offset</topic><topic>Metals</topic><topic>Nanoscale devices</topic><topic>Nanowires</topic><topic>overlay</topic><topic>Systematics</topic><topic>yield</topic><toplevel>online_resources</toplevel><creatorcontrib>Vijayakumar, Priyamvada</creatorcontrib><creatorcontrib>Narayanan, Pritish</creatorcontrib><creatorcontrib>Koren, Israel</creatorcontrib><creatorcontrib>Mani Krishna, C.</creatorcontrib><creatorcontrib>Moritz, Csaba Andras</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vijayakumar, Priyamvada</au><au>Narayanan, Pritish</au><au>Koren, Israel</au><au>Mani Krishna, C.</au><au>Moritz, Csaba Andras</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Impact of nanomanufacturing flow on systematic yield losses in nanoscale fabrics</atitle><btitle>2011 IEEE/ACM International Symposium on Nanoscale Architectures</btitle><stitle>NANOARCH</stitle><date>2011-06-08</date><risdate>2011</risdate><spage>181</spage><epage>188</epage><pages>181-188</pages><issn>2327-8218</issn><eissn>2327-8226</eissn><isbn>1457709937</isbn><isbn>9781457709937</isbn><eisbn>9781457709944</eisbn><eisbn>1457709945</eisbn><eisbn>9781457709951</eisbn><eisbn>1457709953</eisbn><abstract>Reliable and scalable manufacturing of nanofabrics entails significant challenges. Scalable nanomanufacturing approaches that employ the use of lithographic masks in conjunction with nanofabrication based on self-assembly have been proposed. A bottom-up fabrication of nanoelectronic circuits is expected to be subject to various defects and identifying the types of defects that may occur during each step of a manufacturing pathway is essential in any attempt to achieve reliable manufacturing. The paper proposes a methodology for analyzing the sources of defects in a nano-manufacturing flow and estimating the resulting systematic yield loss. This methodology allows analyzing the impact of the fabrication process on the systematic yield. It integrates physical fabric considerations, manufacturing sequences and the resulting defect scenarios. This is in contrast to most current approaches that use conventional defect models and assume constant defect rates without analyzing the manufacturing pathway to determine the sources of defects and their probabilities (or rates). While the focus of the paper is on estimating the mask overlay-limited yield for the NASIC nano-fabric, the proposed approach can be easily adapted to suit other structured nano-fabrics.</abstract><cop>Washington, DC, USA</cop><pub>IEEE Computer Society</pub><doi>10.1109/NANOARCH.2011.5941502</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-8218
ispartof 2011 IEEE/ACM International Symposium on Nanoscale Architectures, 2011, p.181-188
issn 2327-8218
2327-8226
language eng
recordid cdi_ieee_primary_5941502
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied computing -- Enterprise computing
Applied computing -- Operations research -- Industry and manufacturing
Applied computing -- Physical sciences and engineering -- Electronics
CMOS integrated circuits
Fabrics
Manufacturing
mask alignment
mask offset
Metals
Nanoscale devices
Nanowires
overlay
Systematics
yield
title Impact of nanomanufacturing flow on systematic yield losses in nanoscale fabrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Impact%20of%20nanomanufacturing%20flow%20on%20systematic%20yield%20losses%20in%20nanoscale%20fabrics&rft.btitle=2011%20IEEE/ACM%20International%20Symposium%20on%20Nanoscale%20Architectures&rft.au=Vijayakumar,%20Priyamvada&rft.date=2011-06-08&rft.spage=181&rft.epage=188&rft.pages=181-188&rft.issn=2327-8218&rft.eissn=2327-8226&rft.isbn=1457709937&rft.isbn_list=9781457709937&rft_id=info:doi/10.1109/NANOARCH.2011.5941502&rft_dat=%3Cacm_6IE%3Eacm_books_10_1109_NANOARCH_2011_5941502%3C/acm_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457709944&rft.eisbn_list=1457709945&rft.eisbn_list=9781457709951&rft.eisbn_list=1457709953&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5941502&rfr_iscdi=true