Video-based roll angle estimation for two-wheeled vehicles

Video-based driver assistance systems are a key component for intelligent vehicles today. Applications for lane detection, traffic sign recognition, and collision avoidance have been successfully deployed in cars and trucks. State-of-the art algorithms rely on machine learning and therefore depend o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schlipsing, Marc, Schepanek, Jakob, Salmen, Jan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 881
container_issue
container_start_page 876
container_title
container_volume
creator Schlipsing, Marc
Schepanek, Jakob
Salmen, Jan
description Video-based driver assistance systems are a key component for intelligent vehicles today. Applications for lane detection, traffic sign recognition, and collision avoidance have been successfully deployed in cars and trucks. State-of-the art algorithms rely on machine learning and therefore depend on invariance conditions, e.g. a fixed image perspective. In order to apply current modules in two-wheeled vehicles one needs to determine the roll angle, i.e. the angle between the road plane and the slanted vehicle. It can either be used for parametrisation of the algorithms or for rotation of the video image back to a horizontal alignment. Using an inertial measurement unit to acquire this data is unreasonably expensive. We propose a video-based module that estimates the current roll angle based on gradient orientation histograms to overcome this flaw. Due to the visual structure of a traffic scene we are able to derive possible roll angles from the gradient statistics by correlation with learnt data. Analogously, we estimate the roll rate by correlating subsequent image statistics and stabilise both measures within a linear Kalman filter. Experiments on real image data from various test scenarios show high accuracy of the proposed approach. Thus, estimating the roll angle / rate from video only, enables us to employ established video-based assistance modules for two-wheeled vehicles without any additional hardware expense.
doi_str_mv 10.1109/IVS.2011.5940533
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5940533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5940533</ieee_id><sourcerecordid>5940533</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-68ab2b44411bbee3fd0c865d802af489e1d21de7408b6c77ac99088fec03c7da3</originalsourceid><addsrcrecordid>eNpFkEtLAzEUheMLbKt7wc38gYz35jFJ3EnxUSi4ULstedyxkdiRmcHiv7dgwdVZnI_Dx2HsCqFGBHezWL3UAhBr7RRoKY_YFJU2BqxDdcwmolGCG4Hq5L-A5pRN0EnkoK05Z9Nh-ADQWgicsNtVTtTx4AdKVd-VUvnte6GKhjF_-jF326rt-mrcdXy3ISp76ps2ORYaLthZ68tAl4ecsbeH-9f5E18-Py7md0ue0eiRN9YHEZRSiCEQyTZBtI1OFoRvlXWESWAio8CGJhrjo3NgbUsRZDTJyxm7_tvNRLT-6vde_c_6cID8BVvWSug</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Video-based roll angle estimation for two-wheeled vehicles</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schlipsing, Marc ; Schepanek, Jakob ; Salmen, Jan</creator><creatorcontrib>Schlipsing, Marc ; Schepanek, Jakob ; Salmen, Jan</creatorcontrib><description>Video-based driver assistance systems are a key component for intelligent vehicles today. Applications for lane detection, traffic sign recognition, and collision avoidance have been successfully deployed in cars and trucks. State-of-the art algorithms rely on machine learning and therefore depend on invariance conditions, e.g. a fixed image perspective. In order to apply current modules in two-wheeled vehicles one needs to determine the roll angle, i.e. the angle between the road plane and the slanted vehicle. It can either be used for parametrisation of the algorithms or for rotation of the video image back to a horizontal alignment. Using an inertial measurement unit to acquire this data is unreasonably expensive. We propose a video-based module that estimates the current roll angle based on gradient orientation histograms to overcome this flaw. Due to the visual structure of a traffic scene we are able to derive possible roll angles from the gradient statistics by correlation with learnt data. Analogously, we estimate the roll rate by correlating subsequent image statistics and stabilise both measures within a linear Kalman filter. Experiments on real image data from various test scenarios show high accuracy of the proposed approach. Thus, estimating the roll angle / rate from video only, enables us to employ established video-based assistance modules for two-wheeled vehicles without any additional hardware expense.</description><identifier>ISSN: 1931-0587</identifier><identifier>ISBN: 1457708906</identifier><identifier>ISBN: 9781457708909</identifier><identifier>EISSN: 2642-7214</identifier><identifier>EISBN: 1457708914</identifier><identifier>EISBN: 9781457708893</identifier><identifier>EISBN: 1457708892</identifier><identifier>EISBN: 9781457708916</identifier><identifier>DOI: 10.1109/IVS.2011.5940533</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Correlation ; Estimation ; Histograms ; Roads ; Training ; Vehicles</subject><ispartof>2011 IEEE Intelligent Vehicles Symposium (IV), 2011, p.876-881</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5940533$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5940533$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schlipsing, Marc</creatorcontrib><creatorcontrib>Schepanek, Jakob</creatorcontrib><creatorcontrib>Salmen, Jan</creatorcontrib><title>Video-based roll angle estimation for two-wheeled vehicles</title><title>2011 IEEE Intelligent Vehicles Symposium (IV)</title><addtitle>IVS</addtitle><description>Video-based driver assistance systems are a key component for intelligent vehicles today. Applications for lane detection, traffic sign recognition, and collision avoidance have been successfully deployed in cars and trucks. State-of-the art algorithms rely on machine learning and therefore depend on invariance conditions, e.g. a fixed image perspective. In order to apply current modules in two-wheeled vehicles one needs to determine the roll angle, i.e. the angle between the road plane and the slanted vehicle. It can either be used for parametrisation of the algorithms or for rotation of the video image back to a horizontal alignment. Using an inertial measurement unit to acquire this data is unreasonably expensive. We propose a video-based module that estimates the current roll angle based on gradient orientation histograms to overcome this flaw. Due to the visual structure of a traffic scene we are able to derive possible roll angles from the gradient statistics by correlation with learnt data. Analogously, we estimate the roll rate by correlating subsequent image statistics and stabilise both measures within a linear Kalman filter. Experiments on real image data from various test scenarios show high accuracy of the proposed approach. Thus, estimating the roll angle / rate from video only, enables us to employ established video-based assistance modules for two-wheeled vehicles without any additional hardware expense.</description><subject>Cameras</subject><subject>Correlation</subject><subject>Estimation</subject><subject>Histograms</subject><subject>Roads</subject><subject>Training</subject><subject>Vehicles</subject><issn>1931-0587</issn><issn>2642-7214</issn><isbn>1457708906</isbn><isbn>9781457708909</isbn><isbn>1457708914</isbn><isbn>9781457708893</isbn><isbn>1457708892</isbn><isbn>9781457708916</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtLAzEUheMLbKt7wc38gYz35jFJ3EnxUSi4ULstedyxkdiRmcHiv7dgwdVZnI_Dx2HsCqFGBHezWL3UAhBr7RRoKY_YFJU2BqxDdcwmolGCG4Hq5L-A5pRN0EnkoK05Z9Nh-ADQWgicsNtVTtTx4AdKVd-VUvnte6GKhjF_-jF326rt-mrcdXy3ISp76ps2ORYaLthZ68tAl4ecsbeH-9f5E18-Py7md0ue0eiRN9YHEZRSiCEQyTZBtI1OFoRvlXWESWAio8CGJhrjo3NgbUsRZDTJyxm7_tvNRLT-6vde_c_6cID8BVvWSug</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Schlipsing, Marc</creator><creator>Schepanek, Jakob</creator><creator>Salmen, Jan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Video-based roll angle estimation for two-wheeled vehicles</title><author>Schlipsing, Marc ; Schepanek, Jakob ; Salmen, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-68ab2b44411bbee3fd0c865d802af489e1d21de7408b6c77ac99088fec03c7da3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cameras</topic><topic>Correlation</topic><topic>Estimation</topic><topic>Histograms</topic><topic>Roads</topic><topic>Training</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Schlipsing, Marc</creatorcontrib><creatorcontrib>Schepanek, Jakob</creatorcontrib><creatorcontrib>Salmen, Jan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schlipsing, Marc</au><au>Schepanek, Jakob</au><au>Salmen, Jan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Video-based roll angle estimation for two-wheeled vehicles</atitle><btitle>2011 IEEE Intelligent Vehicles Symposium (IV)</btitle><stitle>IVS</stitle><date>2011-06</date><risdate>2011</risdate><spage>876</spage><epage>881</epage><pages>876-881</pages><issn>1931-0587</issn><eissn>2642-7214</eissn><isbn>1457708906</isbn><isbn>9781457708909</isbn><eisbn>1457708914</eisbn><eisbn>9781457708893</eisbn><eisbn>1457708892</eisbn><eisbn>9781457708916</eisbn><abstract>Video-based driver assistance systems are a key component for intelligent vehicles today. Applications for lane detection, traffic sign recognition, and collision avoidance have been successfully deployed in cars and trucks. State-of-the art algorithms rely on machine learning and therefore depend on invariance conditions, e.g. a fixed image perspective. In order to apply current modules in two-wheeled vehicles one needs to determine the roll angle, i.e. the angle between the road plane and the slanted vehicle. It can either be used for parametrisation of the algorithms or for rotation of the video image back to a horizontal alignment. Using an inertial measurement unit to acquire this data is unreasonably expensive. We propose a video-based module that estimates the current roll angle based on gradient orientation histograms to overcome this flaw. Due to the visual structure of a traffic scene we are able to derive possible roll angles from the gradient statistics by correlation with learnt data. Analogously, we estimate the roll rate by correlating subsequent image statistics and stabilise both measures within a linear Kalman filter. Experiments on real image data from various test scenarios show high accuracy of the proposed approach. Thus, estimating the roll angle / rate from video only, enables us to employ established video-based assistance modules for two-wheeled vehicles without any additional hardware expense.</abstract><pub>IEEE</pub><doi>10.1109/IVS.2011.5940533</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1931-0587
ispartof 2011 IEEE Intelligent Vehicles Symposium (IV), 2011, p.876-881
issn 1931-0587
2642-7214
language eng
recordid cdi_ieee_primary_5940533
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Correlation
Estimation
Histograms
Roads
Training
Vehicles
title Video-based roll angle estimation for two-wheeled vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Video-based%20roll%20angle%20estimation%20for%20two-wheeled%20vehicles&rft.btitle=2011%20IEEE%20Intelligent%20Vehicles%20Symposium%20(IV)&rft.au=Schlipsing,%20Marc&rft.date=2011-06&rft.spage=876&rft.epage=881&rft.pages=876-881&rft.issn=1931-0587&rft.eissn=2642-7214&rft.isbn=1457708906&rft.isbn_list=9781457708909&rft_id=info:doi/10.1109/IVS.2011.5940533&rft_dat=%3Cieee_6IE%3E5940533%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457708914&rft.eisbn_list=9781457708893&rft.eisbn_list=1457708892&rft.eisbn_list=9781457708916&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5940533&rfr_iscdi=true