Quasi-Orthogonal Wideband Radar Waveforms Based on Chaotic Systems
Many radar applications, such as those involving multiple-input, multiple-output (MIMO) radar, require sets of waveforms that are orthogonal, or nearly orthogonal. As shown in the work presented here, a set of nearly orthogonal waveforms with a high cardinality can be generated using chaotic systems...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2011-07, Vol.47 (3), p.1974-1984 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1984 |
---|---|
container_issue | 3 |
container_start_page | 1974 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 47 |
creator | Willsey, M. S. Cuomo, K. M. Oppenheim, A. V. |
description | Many radar applications, such as those involving multiple-input, multiple-output (MIMO) radar, require sets of waveforms that are orthogonal, or nearly orthogonal. As shown in the work presented here, a set of nearly orthogonal waveforms with a high cardinality can be generated using chaotic systems, and this set performs comparably to other waveform sets used in pulse compression radar systems. Specifically, the nearly orthogonal waveforms from chaotic systems are shown to possess many desirable radar properties including a compact spectrum, low range sidelobes, and an average transmit power within a few dB of peak power. Moreover, these waveforms can be generated at essentially any practical time length and bandwidth. Since these waveforms are generated from a deterministic process, each waveform can be represented with a small number of system parameters. Additionally, assuming these waveforms possess a large time-bandwidth product, a high number of nearly orthogonal chaotic waveforms exist for a given time and bandwidth. Thus the proposed generation procedure can potentially be used to generate a new transmit waveform on each pulse. |
doi_str_mv | 10.1109/TAES.2011.5937277 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5937277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5937277</ieee_id><sourcerecordid>2392467671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-e77ce48d326a67cc5a53b8f4fb8f4dfd893d79662635b17bf5976f3d0e873b103</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoOKc_QLwp3njVmo8maS63MT9gMHSTXYa0SVxH28ykFfbvbdn0wptzOJznPXAeAG4RTBCC4nE9ma8SDBFKqCAcc34GRohSHgsGyTkYQYiyWGCKLsFVCLt-TLOUjMD0rVOhjJe-3bpP16gq2pTa5KrR0bvSykcb9W2s83WIpioYHbkmmm2Va8siWh1Ca-pwDS6sqoK5OfUx-Hiar2cv8WL5_DqbLOKCMN7GhvPCpJkmmCnGi4IqSvLMpnYo2upMEM0FY5gRmiOeWyo4s0RDk3GSI0jG4OF4d-_dV2dCK-syFKaqVGNcF2QmGE57A7gn7_-RO9f5_rke4hRCQfAAoSNUeBeCN1bufVkrf5AIysGpHJzKwak8Oe0zd8dMaYz543-3P9vccWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875009322</pqid></control><display><type>article</type><title>Quasi-Orthogonal Wideband Radar Waveforms Based on Chaotic Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Willsey, M. S. ; Cuomo, K. M. ; Oppenheim, A. V.</creator><creatorcontrib>Willsey, M. S. ; Cuomo, K. M. ; Oppenheim, A. V.</creatorcontrib><description>Many radar applications, such as those involving multiple-input, multiple-output (MIMO) radar, require sets of waveforms that are orthogonal, or nearly orthogonal. As shown in the work presented here, a set of nearly orthogonal waveforms with a high cardinality can be generated using chaotic systems, and this set performs comparably to other waveform sets used in pulse compression radar systems. Specifically, the nearly orthogonal waveforms from chaotic systems are shown to possess many desirable radar properties including a compact spectrum, low range sidelobes, and an average transmit power within a few dB of peak power. Moreover, these waveforms can be generated at essentially any practical time length and bandwidth. Since these waveforms are generated from a deterministic process, each waveform can be represented with a small number of system parameters. Additionally, assuming these waveforms possess a large time-bandwidth product, a high number of nearly orthogonal chaotic waveforms exist for a given time and bandwidth. Thus the proposed generation procedure can potentially be used to generate a new transmit waveform on each pulse.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2011.5937277</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Air traffic control ; Aircraft components ; Bandwidth ; Chaos ; Chaos theory ; Correlation ; Electronic systems ; Equations ; Noise levels ; Radar ; Surface roughness ; Surface waves ; Waveforms</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2011-07, Vol.47 (3), p.1974-1984</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-e77ce48d326a67cc5a53b8f4fb8f4dfd893d79662635b17bf5976f3d0e873b103</citedby><cites>FETCH-LOGICAL-c367t-e77ce48d326a67cc5a53b8f4fb8f4dfd893d79662635b17bf5976f3d0e873b103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5937277$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5937277$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Willsey, M. S.</creatorcontrib><creatorcontrib>Cuomo, K. M.</creatorcontrib><creatorcontrib>Oppenheim, A. V.</creatorcontrib><title>Quasi-Orthogonal Wideband Radar Waveforms Based on Chaotic Systems</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Many radar applications, such as those involving multiple-input, multiple-output (MIMO) radar, require sets of waveforms that are orthogonal, or nearly orthogonal. As shown in the work presented here, a set of nearly orthogonal waveforms with a high cardinality can be generated using chaotic systems, and this set performs comparably to other waveform sets used in pulse compression radar systems. Specifically, the nearly orthogonal waveforms from chaotic systems are shown to possess many desirable radar properties including a compact spectrum, low range sidelobes, and an average transmit power within a few dB of peak power. Moreover, these waveforms can be generated at essentially any practical time length and bandwidth. Since these waveforms are generated from a deterministic process, each waveform can be represented with a small number of system parameters. Additionally, assuming these waveforms possess a large time-bandwidth product, a high number of nearly orthogonal chaotic waveforms exist for a given time and bandwidth. Thus the proposed generation procedure can potentially be used to generate a new transmit waveform on each pulse.</description><subject>Air traffic control</subject><subject>Aircraft components</subject><subject>Bandwidth</subject><subject>Chaos</subject><subject>Chaos theory</subject><subject>Correlation</subject><subject>Electronic systems</subject><subject>Equations</subject><subject>Noise levels</subject><subject>Radar</subject><subject>Surface roughness</subject><subject>Surface waves</subject><subject>Waveforms</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1LwzAUhoMoOKc_QLwp3njVmo8maS63MT9gMHSTXYa0SVxH28ykFfbvbdn0wptzOJznPXAeAG4RTBCC4nE9ma8SDBFKqCAcc34GRohSHgsGyTkYQYiyWGCKLsFVCLt-TLOUjMD0rVOhjJe-3bpP16gq2pTa5KrR0bvSykcb9W2s83WIpioYHbkmmm2Va8siWh1Ca-pwDS6sqoK5OfUx-Hiar2cv8WL5_DqbLOKCMN7GhvPCpJkmmCnGi4IqSvLMpnYo2upMEM0FY5gRmiOeWyo4s0RDk3GSI0jG4OF4d-_dV2dCK-syFKaqVGNcF2QmGE57A7gn7_-RO9f5_rke4hRCQfAAoSNUeBeCN1bufVkrf5AIysGpHJzKwak8Oe0zd8dMaYz543-3P9vccWA</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Willsey, M. S.</creator><creator>Cuomo, K. M.</creator><creator>Oppenheim, A. V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201107</creationdate><title>Quasi-Orthogonal Wideband Radar Waveforms Based on Chaotic Systems</title><author>Willsey, M. S. ; Cuomo, K. M. ; Oppenheim, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-e77ce48d326a67cc5a53b8f4fb8f4dfd893d79662635b17bf5976f3d0e873b103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Air traffic control</topic><topic>Aircraft components</topic><topic>Bandwidth</topic><topic>Chaos</topic><topic>Chaos theory</topic><topic>Correlation</topic><topic>Electronic systems</topic><topic>Equations</topic><topic>Noise levels</topic><topic>Radar</topic><topic>Surface roughness</topic><topic>Surface waves</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willsey, M. S.</creatorcontrib><creatorcontrib>Cuomo, K. M.</creatorcontrib><creatorcontrib>Oppenheim, A. V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Willsey, M. S.</au><au>Cuomo, K. M.</au><au>Oppenheim, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-Orthogonal Wideband Radar Waveforms Based on Chaotic Systems</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2011-07</date><risdate>2011</risdate><volume>47</volume><issue>3</issue><spage>1974</spage><epage>1984</epage><pages>1974-1984</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Many radar applications, such as those involving multiple-input, multiple-output (MIMO) radar, require sets of waveforms that are orthogonal, or nearly orthogonal. As shown in the work presented here, a set of nearly orthogonal waveforms with a high cardinality can be generated using chaotic systems, and this set performs comparably to other waveform sets used in pulse compression radar systems. Specifically, the nearly orthogonal waveforms from chaotic systems are shown to possess many desirable radar properties including a compact spectrum, low range sidelobes, and an average transmit power within a few dB of peak power. Moreover, these waveforms can be generated at essentially any practical time length and bandwidth. Since these waveforms are generated from a deterministic process, each waveform can be represented with a small number of system parameters. Additionally, assuming these waveforms possess a large time-bandwidth product, a high number of nearly orthogonal chaotic waveforms exist for a given time and bandwidth. Thus the proposed generation procedure can potentially be used to generate a new transmit waveform on each pulse.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2011.5937277</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2011-07, Vol.47 (3), p.1974-1984 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_ieee_primary_5937277 |
source | IEEE Electronic Library (IEL) |
subjects | Air traffic control Aircraft components Bandwidth Chaos Chaos theory Correlation Electronic systems Equations Noise levels Radar Surface roughness Surface waves Waveforms |
title | Quasi-Orthogonal Wideband Radar Waveforms Based on Chaotic Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-Orthogonal%20Wideband%20Radar%20Waveforms%20Based%20on%20Chaotic%20Systems&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Willsey,%20M.%20S.&rft.date=2011-07&rft.volume=47&rft.issue=3&rft.spage=1974&rft.epage=1984&rft.pages=1974-1984&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2011.5937277&rft_dat=%3Cproquest_RIE%3E2392467671%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875009322&rft_id=info:pmid/&rft_ieee_id=5937277&rfr_iscdi=true |