Approximate Abstractions of Stochastic Hybrid Systems
We present a constructive procedure for obtaining a finite approximate abstraction of a discrete-time stochastic hybrid system. The procedure consists of a partition of the state space of the system and depends on a controllable parameter. Given proper continuity assumptions on the model, the approx...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2011-11, Vol.56 (11), p.2688-2694 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2694 |
---|---|
container_issue | 11 |
container_start_page | 2688 |
container_title | IEEE transactions on automatic control |
container_volume | 56 |
creator | Abate, A. D'Innocenzo, A. Di Benedetto, M. D. |
description | We present a constructive procedure for obtaining a finite approximate abstraction of a discrete-time stochastic hybrid system. The procedure consists of a partition of the state space of the system and depends on a controllable parameter. Given proper continuity assumptions on the model, the approximation errors introduced by the abstraction procedure are explicitly computed and it is shown that they can be tuned through the parameter of the partition. The abstraction is interpreted as a Markov set-Chain. We show that the enforcement of certain ergodic properties on the stochastic hybrid model implies the existence of a finite abstraction with finite error in time over the concrete model, and allows introducing a finite-time algorithm that computes the abstraction. |
doi_str_mv | 10.1109/TAC.2011.2160595 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5929535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5929535</ieee_id><sourcerecordid>2501196851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-ca79ef8276d361a16a18f43c509988d38a1a0771be5ffb73d0b87f2e7e956233</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxYMoWKt3wcsiiKetmWTzdVyKWqHgob2HbDbBle1uTVKw_70pLT14Gob5zeO9h9A94BkAVi_rej4jGGBGgGOm2AWaAGOyJIzQSzTBGGSpiOTX6CbG77zyqoIJYvV2G8bfbmOSK-ompmBs6sYhFqMvVmm0XyamzhaLfRO6tljtY3KbeIuuvOmjuzvNKVq_va7ni3L5-f4xr5elpYyk0hqhnJdE8JZyMMANSF9Ry7BSUrZUGjBYCGgc874RtMWNFJ444RTjhNIpej7KZos_OxeT3nTRur43gxt3UStOJQNBRCYf_5Hf4y4M2ZtWOSolSrEM4SNkwxhjcF5vQw4e9hqwPpSoc4n6UKI-lZhfnk66JlrT-2AG28XzH-EVrmi2MUUPR65zzp3PTJGswegfQiB4rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901632995</pqid></control><display><type>article</type><title>Approximate Abstractions of Stochastic Hybrid Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Abate, A. ; D'Innocenzo, A. ; Di Benedetto, M. D.</creator><creatorcontrib>Abate, A. ; D'Innocenzo, A. ; Di Benedetto, M. D.</creatorcontrib><description>We present a constructive procedure for obtaining a finite approximate abstraction of a discrete-time stochastic hybrid system. The procedure consists of a partition of the state space of the system and depends on a controllable parameter. Given proper continuity assumptions on the model, the approximation errors introduced by the abstraction procedure are explicitly computed and it is shown that they can be tuned through the parameter of the partition. The abstraction is interpreted as a Markov set-Chain. We show that the enforcement of certain ergodic properties on the stochastic hybrid model implies the existence of a finite abstraction with finite error in time over the concrete model, and allows introducing a finite-time algorithm that computes the abstraction.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2011.2160595</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Approximation ; Approximation methods ; Computational modeling ; Ergodic processes ; Exact sciences and technology ; Fluctuation phenomena, random processes, noise, and brownian motion ; Hybrid systems ; Kernel ; Markov Chains ; Markov processes ; Mathematical analysis ; Mathematical models ; Mathematics ; Partitions ; Physics ; Probabilistic logic ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Steady-state ; stochastic hybrid systems ; Stochasticity</subject><ispartof>IEEE transactions on automatic control, 2011-11, Vol.56 (11), p.2688-2694</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-ca79ef8276d361a16a18f43c509988d38a1a0771be5ffb73d0b87f2e7e956233</citedby><cites>FETCH-LOGICAL-c352t-ca79ef8276d361a16a18f43c509988d38a1a0771be5ffb73d0b87f2e7e956233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5929535$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5929535$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26404396$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abate, A.</creatorcontrib><creatorcontrib>D'Innocenzo, A.</creatorcontrib><creatorcontrib>Di Benedetto, M. D.</creatorcontrib><title>Approximate Abstractions of Stochastic Hybrid Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We present a constructive procedure for obtaining a finite approximate abstraction of a discrete-time stochastic hybrid system. The procedure consists of a partition of the state space of the system and depends on a controllable parameter. Given proper continuity assumptions on the model, the approximation errors introduced by the abstraction procedure are explicitly computed and it is shown that they can be tuned through the parameter of the partition. The abstraction is interpreted as a Markov set-Chain. We show that the enforcement of certain ergodic properties on the stochastic hybrid model implies the existence of a finite abstraction with finite error in time over the concrete model, and allows introducing a finite-time algorithm that computes the abstraction.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Approximation methods</subject><subject>Computational modeling</subject><subject>Ergodic processes</subject><subject>Exact sciences and technology</subject><subject>Fluctuation phenomena, random processes, noise, and brownian motion</subject><subject>Hybrid systems</subject><subject>Kernel</subject><subject>Markov Chains</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Partitions</subject><subject>Physics</subject><subject>Probabilistic logic</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Steady-state</subject><subject>stochastic hybrid systems</subject><subject>Stochasticity</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1LAzEQxYMoWKt3wcsiiKetmWTzdVyKWqHgob2HbDbBle1uTVKw_70pLT14Gob5zeO9h9A94BkAVi_rej4jGGBGgGOm2AWaAGOyJIzQSzTBGGSpiOTX6CbG77zyqoIJYvV2G8bfbmOSK-ompmBs6sYhFqMvVmm0XyamzhaLfRO6tljtY3KbeIuuvOmjuzvNKVq_va7ni3L5-f4xr5elpYyk0hqhnJdE8JZyMMANSF9Ry7BSUrZUGjBYCGgc874RtMWNFJ444RTjhNIpej7KZos_OxeT3nTRur43gxt3UStOJQNBRCYf_5Hf4y4M2ZtWOSolSrEM4SNkwxhjcF5vQw4e9hqwPpSoc4n6UKI-lZhfnk66JlrT-2AG28XzH-EVrmi2MUUPR65zzp3PTJGswegfQiB4rg</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Abate, A.</creator><creator>D'Innocenzo, A.</creator><creator>Di Benedetto, M. D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20111101</creationdate><title>Approximate Abstractions of Stochastic Hybrid Systems</title><author>Abate, A. ; D'Innocenzo, A. ; Di Benedetto, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-ca79ef8276d361a16a18f43c509988d38a1a0771be5ffb73d0b87f2e7e956233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Approximation methods</topic><topic>Computational modeling</topic><topic>Ergodic processes</topic><topic>Exact sciences and technology</topic><topic>Fluctuation phenomena, random processes, noise, and brownian motion</topic><topic>Hybrid systems</topic><topic>Kernel</topic><topic>Markov Chains</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Partitions</topic><topic>Physics</topic><topic>Probabilistic logic</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Steady-state</topic><topic>stochastic hybrid systems</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abate, A.</creatorcontrib><creatorcontrib>D'Innocenzo, A.</creatorcontrib><creatorcontrib>Di Benedetto, M. D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abate, A.</au><au>D'Innocenzo, A.</au><au>Di Benedetto, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate Abstractions of Stochastic Hybrid Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>56</volume><issue>11</issue><spage>2688</spage><epage>2694</epage><pages>2688-2694</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We present a constructive procedure for obtaining a finite approximate abstraction of a discrete-time stochastic hybrid system. The procedure consists of a partition of the state space of the system and depends on a controllable parameter. Given proper continuity assumptions on the model, the approximation errors introduced by the abstraction procedure are explicitly computed and it is shown that they can be tuned through the parameter of the partition. The abstraction is interpreted as a Markov set-Chain. We show that the enforcement of certain ergodic properties on the stochastic hybrid model implies the existence of a finite abstraction with finite error in time over the concrete model, and allows introducing a finite-time algorithm that computes the abstraction.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2011.2160595</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2011-11, Vol.56 (11), p.2688-2694 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_ieee_primary_5929535 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Approximation Approximation methods Computational modeling Ergodic processes Exact sciences and technology Fluctuation phenomena, random processes, noise, and brownian motion Hybrid systems Kernel Markov Chains Markov processes Mathematical analysis Mathematical models Mathematics Partitions Physics Probabilistic logic Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use Statistical physics, thermodynamics, and nonlinear dynamical systems Steady-state stochastic hybrid systems Stochasticity |
title | Approximate Abstractions of Stochastic Hybrid Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20Abstractions%20of%20Stochastic%20Hybrid%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Abate,%20A.&rft.date=2011-11-01&rft.volume=56&rft.issue=11&rft.spage=2688&rft.epage=2694&rft.pages=2688-2694&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2011.2160595&rft_dat=%3Cproquest_RIE%3E2501196851%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901632995&rft_id=info:pmid/&rft_ieee_id=5929535&rfr_iscdi=true |