Approximate Abstractions of Stochastic Hybrid Systems

We present a constructive procedure for obtaining a finite approximate abstraction of a discrete-time stochastic hybrid system. The procedure consists of a partition of the state space of the system and depends on a controllable parameter. Given proper continuity assumptions on the model, the approx...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2011-11, Vol.56 (11), p.2688-2694
Hauptverfasser: Abate, A., D'Innocenzo, A., Di Benedetto, M. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2694
container_issue 11
container_start_page 2688
container_title IEEE transactions on automatic control
container_volume 56
creator Abate, A.
D'Innocenzo, A.
Di Benedetto, M. D.
description We present a constructive procedure for obtaining a finite approximate abstraction of a discrete-time stochastic hybrid system. The procedure consists of a partition of the state space of the system and depends on a controllable parameter. Given proper continuity assumptions on the model, the approximation errors introduced by the abstraction procedure are explicitly computed and it is shown that they can be tuned through the parameter of the partition. The abstraction is interpreted as a Markov set-Chain. We show that the enforcement of certain ergodic properties on the stochastic hybrid model implies the existence of a finite abstraction with finite error in time over the concrete model, and allows introducing a finite-time algorithm that computes the abstraction.
doi_str_mv 10.1109/TAC.2011.2160595
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5929535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5929535</ieee_id><sourcerecordid>2501196851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-ca79ef8276d361a16a18f43c509988d38a1a0771be5ffb73d0b87f2e7e956233</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxYMoWKt3wcsiiKetmWTzdVyKWqHgob2HbDbBle1uTVKw_70pLT14Gob5zeO9h9A94BkAVi_rej4jGGBGgGOm2AWaAGOyJIzQSzTBGGSpiOTX6CbG77zyqoIJYvV2G8bfbmOSK-ompmBs6sYhFqMvVmm0XyamzhaLfRO6tljtY3KbeIuuvOmjuzvNKVq_va7ni3L5-f4xr5elpYyk0hqhnJdE8JZyMMANSF9Ry7BSUrZUGjBYCGgc874RtMWNFJ444RTjhNIpej7KZos_OxeT3nTRur43gxt3UStOJQNBRCYf_5Hf4y4M2ZtWOSolSrEM4SNkwxhjcF5vQw4e9hqwPpSoc4n6UKI-lZhfnk66JlrT-2AG28XzH-EVrmi2MUUPR65zzp3PTJGswegfQiB4rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901632995</pqid></control><display><type>article</type><title>Approximate Abstractions of Stochastic Hybrid Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Abate, A. ; D'Innocenzo, A. ; Di Benedetto, M. D.</creator><creatorcontrib>Abate, A. ; D'Innocenzo, A. ; Di Benedetto, M. D.</creatorcontrib><description>We present a constructive procedure for obtaining a finite approximate abstraction of a discrete-time stochastic hybrid system. The procedure consists of a partition of the state space of the system and depends on a controllable parameter. Given proper continuity assumptions on the model, the approximation errors introduced by the abstraction procedure are explicitly computed and it is shown that they can be tuned through the parameter of the partition. The abstraction is interpreted as a Markov set-Chain. We show that the enforcement of certain ergodic properties on the stochastic hybrid model implies the existence of a finite abstraction with finite error in time over the concrete model, and allows introducing a finite-time algorithm that computes the abstraction.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2011.2160595</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Approximation ; Approximation methods ; Computational modeling ; Ergodic processes ; Exact sciences and technology ; Fluctuation phenomena, random processes, noise, and brownian motion ; Hybrid systems ; Kernel ; Markov Chains ; Markov processes ; Mathematical analysis ; Mathematical models ; Mathematics ; Partitions ; Physics ; Probabilistic logic ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Steady-state ; stochastic hybrid systems ; Stochasticity</subject><ispartof>IEEE transactions on automatic control, 2011-11, Vol.56 (11), p.2688-2694</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-ca79ef8276d361a16a18f43c509988d38a1a0771be5ffb73d0b87f2e7e956233</citedby><cites>FETCH-LOGICAL-c352t-ca79ef8276d361a16a18f43c509988d38a1a0771be5ffb73d0b87f2e7e956233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5929535$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5929535$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26404396$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abate, A.</creatorcontrib><creatorcontrib>D'Innocenzo, A.</creatorcontrib><creatorcontrib>Di Benedetto, M. D.</creatorcontrib><title>Approximate Abstractions of Stochastic Hybrid Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We present a constructive procedure for obtaining a finite approximate abstraction of a discrete-time stochastic hybrid system. The procedure consists of a partition of the state space of the system and depends on a controllable parameter. Given proper continuity assumptions on the model, the approximation errors introduced by the abstraction procedure are explicitly computed and it is shown that they can be tuned through the parameter of the partition. The abstraction is interpreted as a Markov set-Chain. We show that the enforcement of certain ergodic properties on the stochastic hybrid model implies the existence of a finite abstraction with finite error in time over the concrete model, and allows introducing a finite-time algorithm that computes the abstraction.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Approximation methods</subject><subject>Computational modeling</subject><subject>Ergodic processes</subject><subject>Exact sciences and technology</subject><subject>Fluctuation phenomena, random processes, noise, and brownian motion</subject><subject>Hybrid systems</subject><subject>Kernel</subject><subject>Markov Chains</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Partitions</subject><subject>Physics</subject><subject>Probabilistic logic</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Steady-state</subject><subject>stochastic hybrid systems</subject><subject>Stochasticity</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1LAzEQxYMoWKt3wcsiiKetmWTzdVyKWqHgob2HbDbBle1uTVKw_70pLT14Gob5zeO9h9A94BkAVi_rej4jGGBGgGOm2AWaAGOyJIzQSzTBGGSpiOTX6CbG77zyqoIJYvV2G8bfbmOSK-ompmBs6sYhFqMvVmm0XyamzhaLfRO6tljtY3KbeIuuvOmjuzvNKVq_va7ni3L5-f4xr5elpYyk0hqhnJdE8JZyMMANSF9Ry7BSUrZUGjBYCGgc874RtMWNFJ444RTjhNIpej7KZos_OxeT3nTRur43gxt3UStOJQNBRCYf_5Hf4y4M2ZtWOSolSrEM4SNkwxhjcF5vQw4e9hqwPpSoc4n6UKI-lZhfnk66JlrT-2AG28XzH-EVrmi2MUUPR65zzp3PTJGswegfQiB4rg</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Abate, A.</creator><creator>D'Innocenzo, A.</creator><creator>Di Benedetto, M. D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20111101</creationdate><title>Approximate Abstractions of Stochastic Hybrid Systems</title><author>Abate, A. ; D'Innocenzo, A. ; Di Benedetto, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-ca79ef8276d361a16a18f43c509988d38a1a0771be5ffb73d0b87f2e7e956233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Approximation methods</topic><topic>Computational modeling</topic><topic>Ergodic processes</topic><topic>Exact sciences and technology</topic><topic>Fluctuation phenomena, random processes, noise, and brownian motion</topic><topic>Hybrid systems</topic><topic>Kernel</topic><topic>Markov Chains</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Partitions</topic><topic>Physics</topic><topic>Probabilistic logic</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Steady-state</topic><topic>stochastic hybrid systems</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abate, A.</creatorcontrib><creatorcontrib>D'Innocenzo, A.</creatorcontrib><creatorcontrib>Di Benedetto, M. D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abate, A.</au><au>D'Innocenzo, A.</au><au>Di Benedetto, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate Abstractions of Stochastic Hybrid Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>56</volume><issue>11</issue><spage>2688</spage><epage>2694</epage><pages>2688-2694</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We present a constructive procedure for obtaining a finite approximate abstraction of a discrete-time stochastic hybrid system. The procedure consists of a partition of the state space of the system and depends on a controllable parameter. Given proper continuity assumptions on the model, the approximation errors introduced by the abstraction procedure are explicitly computed and it is shown that they can be tuned through the parameter of the partition. The abstraction is interpreted as a Markov set-Chain. We show that the enforcement of certain ergodic properties on the stochastic hybrid model implies the existence of a finite abstraction with finite error in time over the concrete model, and allows introducing a finite-time algorithm that computes the abstraction.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2011.2160595</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2011-11, Vol.56 (11), p.2688-2694
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_5929535
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation
Approximation methods
Computational modeling
Ergodic processes
Exact sciences and technology
Fluctuation phenomena, random processes, noise, and brownian motion
Hybrid systems
Kernel
Markov Chains
Markov processes
Mathematical analysis
Mathematical models
Mathematics
Partitions
Physics
Probabilistic logic
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Statistical physics, thermodynamics, and nonlinear dynamical systems
Steady-state
stochastic hybrid systems
Stochasticity
title Approximate Abstractions of Stochastic Hybrid Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20Abstractions%20of%20Stochastic%20Hybrid%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Abate,%20A.&rft.date=2011-11-01&rft.volume=56&rft.issue=11&rft.spage=2688&rft.epage=2694&rft.pages=2688-2694&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2011.2160595&rft_dat=%3Cproquest_RIE%3E2501196851%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901632995&rft_id=info:pmid/&rft_ieee_id=5929535&rfr_iscdi=true