Locality-Sensitive Bloom Filter for Approximate Membership Query
In many network applications, Bloom filters are used to support exact-matching membership query for their randomized space-efficient data structure with a small probability of false answers. In this paper, we extend the standard Bloom filter to Locality-Sensitive Bloom Filter (LSBF) to provide Appro...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 2012-06, Vol.61 (6), p.817-830 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 830 |
---|---|
container_issue | 6 |
container_start_page | 817 |
container_title | IEEE transactions on computers |
container_volume | 61 |
creator | Yu Hua Bin Xiao Veeravalli, B. Dan Feng |
description | In many network applications, Bloom filters are used to support exact-matching membership query for their randomized space-efficient data structure with a small probability of false answers. In this paper, we extend the standard Bloom filter to Locality-Sensitive Bloom Filter (LSBF) to provide Approximate Membership Query (AMQ) service. We achieve this by replacing uniform and independent hash functions with locality-sensitive hash functions. Such replacement makes the storage in LSBF to be locality sensitive. Meanwhile, LSBF is space efficient and query responsive by employing the Bloom filter design. In the design of the LSBF structure, we propose a bit vector to reduce False Positives (FP). The bit vector can verify multiple attributes belonging to one member. We also use an active overflowed scheme to significantly decrease False Negatives (FN). Rigorous theoretical analysis (e.g., on FP, FN, and space overhead) shows that the design of LSBF is space compact and can provide accurate response to approximate membership queries. We have implemented LSBF in a real distributed system to perform extensive experiments using real-world traces. Experimental results show that LSBF, compared with a baseline approach and other state-of-the-art work in the literature (SmartStore and LSB-tree), takes less time to respond AMQ and consumes much less storage space. |
doi_str_mv | 10.1109/TC.2011.108 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_5928322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5928322</ieee_id><sourcerecordid>10_1109_TC_2011_108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-a7a830e559af31af3cee99a6ee46f6821983a66217efc7ca107802628c19602b3</originalsourceid><addsrcrecordid>eNo9j0FLxDAUhIMoWFdPHr30Ll3fSzZpcnMtrgoVEeu5ZMMrRlpbkir232-XFQ_DMPAxzDB2ibBEBHNTFUsOiEsEfcQSlDLPjJHqmCUAqDMjVnDKzmL8BADFwSTstuydbf04ZW_0Ff3ofyi9a_u-Sze-HSmkTR_S9TCE_td3dqT0mbothfjhh_T1m8J0zk4a20a6-PMFe9_cV8VjVr48PBXrMnNcijGzudUCSEpjG4GzHJExVhGtVKM0R6OFVYpjTo3LnUXINXDFtUOjgG_Fgl0fel3oYwzU1EOYF4WpRqj35-uqqPfn56xn-upAeyL6J6XhWnAudroyVMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Locality-Sensitive Bloom Filter for Approximate Membership Query</title><source>IEEE Electronic Library (IEL)</source><creator>Yu Hua ; Bin Xiao ; Veeravalli, B. ; Dan Feng</creator><creatorcontrib>Yu Hua ; Bin Xiao ; Veeravalli, B. ; Dan Feng</creatorcontrib><description>In many network applications, Bloom filters are used to support exact-matching membership query for their randomized space-efficient data structure with a small probability of false answers. In this paper, we extend the standard Bloom filter to Locality-Sensitive Bloom Filter (LSBF) to provide Approximate Membership Query (AMQ) service. We achieve this by replacing uniform and independent hash functions with locality-sensitive hash functions. Such replacement makes the storage in LSBF to be locality sensitive. Meanwhile, LSBF is space efficient and query responsive by employing the Bloom filter design. In the design of the LSBF structure, we propose a bit vector to reduce False Positives (FP). The bit vector can verify multiple attributes belonging to one member. We also use an active overflowed scheme to significantly decrease False Negatives (FN). Rigorous theoretical analysis (e.g., on FP, FN, and space overhead) shows that the design of LSBF is space compact and can provide accurate response to approximate membership queries. We have implemented LSBF in a real distributed system to perform extensive experiments using real-world traces. Experimental results show that LSBF, compared with a baseline approach and other state-of-the-art work in the literature (SmartStore and LSB-tree), takes less time to respond AMQ and consumes much less storage space.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2011.108</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Approximate membership query ; Arrays ; bloom filters ; Euclidean distance ; Extraterrestrial measurements ; Geometry ; locality sensitive hashing ; Probabilistic logic</subject><ispartof>IEEE transactions on computers, 2012-06, Vol.61 (6), p.817-830</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-a7a830e559af31af3cee99a6ee46f6821983a66217efc7ca107802628c19602b3</citedby><cites>FETCH-LOGICAL-c253t-a7a830e559af31af3cee99a6ee46f6821983a66217efc7ca107802628c19602b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5928322$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5928322$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu Hua</creatorcontrib><creatorcontrib>Bin Xiao</creatorcontrib><creatorcontrib>Veeravalli, B.</creatorcontrib><creatorcontrib>Dan Feng</creatorcontrib><title>Locality-Sensitive Bloom Filter for Approximate Membership Query</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>In many network applications, Bloom filters are used to support exact-matching membership query for their randomized space-efficient data structure with a small probability of false answers. In this paper, we extend the standard Bloom filter to Locality-Sensitive Bloom Filter (LSBF) to provide Approximate Membership Query (AMQ) service. We achieve this by replacing uniform and independent hash functions with locality-sensitive hash functions. Such replacement makes the storage in LSBF to be locality sensitive. Meanwhile, LSBF is space efficient and query responsive by employing the Bloom filter design. In the design of the LSBF structure, we propose a bit vector to reduce False Positives (FP). The bit vector can verify multiple attributes belonging to one member. We also use an active overflowed scheme to significantly decrease False Negatives (FN). Rigorous theoretical analysis (e.g., on FP, FN, and space overhead) shows that the design of LSBF is space compact and can provide accurate response to approximate membership queries. We have implemented LSBF in a real distributed system to perform extensive experiments using real-world traces. Experimental results show that LSBF, compared with a baseline approach and other state-of-the-art work in the literature (SmartStore and LSB-tree), takes less time to respond AMQ and consumes much less storage space.</description><subject>Accuracy</subject><subject>Approximate membership query</subject><subject>Arrays</subject><subject>bloom filters</subject><subject>Euclidean distance</subject><subject>Extraterrestrial measurements</subject><subject>Geometry</subject><subject>locality sensitive hashing</subject><subject>Probabilistic logic</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j0FLxDAUhIMoWFdPHr30Ll3fSzZpcnMtrgoVEeu5ZMMrRlpbkir232-XFQ_DMPAxzDB2ibBEBHNTFUsOiEsEfcQSlDLPjJHqmCUAqDMjVnDKzmL8BADFwSTstuydbf04ZW_0Ff3ofyi9a_u-Sze-HSmkTR_S9TCE_td3dqT0mbothfjhh_T1m8J0zk4a20a6-PMFe9_cV8VjVr48PBXrMnNcijGzudUCSEpjG4GzHJExVhGtVKM0R6OFVYpjTo3LnUXINXDFtUOjgG_Fgl0fel3oYwzU1EOYF4WpRqj35-uqqPfn56xn-upAeyL6J6XhWnAudroyVMM</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Yu Hua</creator><creator>Bin Xiao</creator><creator>Veeravalli, B.</creator><creator>Dan Feng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120601</creationdate><title>Locality-Sensitive Bloom Filter for Approximate Membership Query</title><author>Yu Hua ; Bin Xiao ; Veeravalli, B. ; Dan Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-a7a830e559af31af3cee99a6ee46f6821983a66217efc7ca107802628c19602b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Approximate membership query</topic><topic>Arrays</topic><topic>bloom filters</topic><topic>Euclidean distance</topic><topic>Extraterrestrial measurements</topic><topic>Geometry</topic><topic>locality sensitive hashing</topic><topic>Probabilistic logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu Hua</creatorcontrib><creatorcontrib>Bin Xiao</creatorcontrib><creatorcontrib>Veeravalli, B.</creatorcontrib><creatorcontrib>Dan Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu Hua</au><au>Bin Xiao</au><au>Veeravalli, B.</au><au>Dan Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locality-Sensitive Bloom Filter for Approximate Membership Query</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>61</volume><issue>6</issue><spage>817</spage><epage>830</epage><pages>817-830</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>In many network applications, Bloom filters are used to support exact-matching membership query for their randomized space-efficient data structure with a small probability of false answers. In this paper, we extend the standard Bloom filter to Locality-Sensitive Bloom Filter (LSBF) to provide Approximate Membership Query (AMQ) service. We achieve this by replacing uniform and independent hash functions with locality-sensitive hash functions. Such replacement makes the storage in LSBF to be locality sensitive. Meanwhile, LSBF is space efficient and query responsive by employing the Bloom filter design. In the design of the LSBF structure, we propose a bit vector to reduce False Positives (FP). The bit vector can verify multiple attributes belonging to one member. We also use an active overflowed scheme to significantly decrease False Negatives (FN). Rigorous theoretical analysis (e.g., on FP, FN, and space overhead) shows that the design of LSBF is space compact and can provide accurate response to approximate membership queries. We have implemented LSBF in a real distributed system to perform extensive experiments using real-world traces. Experimental results show that LSBF, compared with a baseline approach and other state-of-the-art work in the literature (SmartStore and LSB-tree), takes less time to respond AMQ and consumes much less storage space.</abstract><pub>IEEE</pub><doi>10.1109/TC.2011.108</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9340 |
ispartof | IEEE transactions on computers, 2012-06, Vol.61 (6), p.817-830 |
issn | 0018-9340 1557-9956 |
language | eng |
recordid | cdi_ieee_primary_5928322 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Approximate membership query Arrays bloom filters Euclidean distance Extraterrestrial measurements Geometry locality sensitive hashing Probabilistic logic |
title | Locality-Sensitive Bloom Filter for Approximate Membership Query |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locality-Sensitive%20Bloom%20Filter%20for%20Approximate%20Membership%20Query&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Yu%20Hua&rft.date=2012-06-01&rft.volume=61&rft.issue=6&rft.spage=817&rft.epage=830&rft.pages=817-830&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2011.108&rft_dat=%3Ccrossref_RIE%3E10_1109_TC_2011_108%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5928322&rfr_iscdi=true |