Locality-Sensitive Bloom Filter for Approximate Membership Query

In many network applications, Bloom filters are used to support exact-matching membership query for their randomized space-efficient data structure with a small probability of false answers. In this paper, we extend the standard Bloom filter to Locality-Sensitive Bloom Filter (LSBF) to provide Appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 2012-06, Vol.61 (6), p.817-830
Hauptverfasser: Yu Hua, Bin Xiao, Veeravalli, B., Dan Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 830
container_issue 6
container_start_page 817
container_title IEEE transactions on computers
container_volume 61
creator Yu Hua
Bin Xiao
Veeravalli, B.
Dan Feng
description In many network applications, Bloom filters are used to support exact-matching membership query for their randomized space-efficient data structure with a small probability of false answers. In this paper, we extend the standard Bloom filter to Locality-Sensitive Bloom Filter (LSBF) to provide Approximate Membership Query (AMQ) service. We achieve this by replacing uniform and independent hash functions with locality-sensitive hash functions. Such replacement makes the storage in LSBF to be locality sensitive. Meanwhile, LSBF is space efficient and query responsive by employing the Bloom filter design. In the design of the LSBF structure, we propose a bit vector to reduce False Positives (FP). The bit vector can verify multiple attributes belonging to one member. We also use an active overflowed scheme to significantly decrease False Negatives (FN). Rigorous theoretical analysis (e.g., on FP, FN, and space overhead) shows that the design of LSBF is space compact and can provide accurate response to approximate membership queries. We have implemented LSBF in a real distributed system to perform extensive experiments using real-world traces. Experimental results show that LSBF, compared with a baseline approach and other state-of-the-art work in the literature (SmartStore and LSB-tree), takes less time to respond AMQ and consumes much less storage space.
doi_str_mv 10.1109/TC.2011.108
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_5928322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5928322</ieee_id><sourcerecordid>10_1109_TC_2011_108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-a7a830e559af31af3cee99a6ee46f6821983a66217efc7ca107802628c19602b3</originalsourceid><addsrcrecordid>eNo9j0FLxDAUhIMoWFdPHr30Ll3fSzZpcnMtrgoVEeu5ZMMrRlpbkir232-XFQ_DMPAxzDB2ibBEBHNTFUsOiEsEfcQSlDLPjJHqmCUAqDMjVnDKzmL8BADFwSTstuydbf04ZW_0Ff3ofyi9a_u-Sze-HSmkTR_S9TCE_td3dqT0mbothfjhh_T1m8J0zk4a20a6-PMFe9_cV8VjVr48PBXrMnNcijGzudUCSEpjG4GzHJExVhGtVKM0R6OFVYpjTo3LnUXINXDFtUOjgG_Fgl0fel3oYwzU1EOYF4WpRqj35-uqqPfn56xn-upAeyL6J6XhWnAudroyVMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Locality-Sensitive Bloom Filter for Approximate Membership Query</title><source>IEEE Electronic Library (IEL)</source><creator>Yu Hua ; Bin Xiao ; Veeravalli, B. ; Dan Feng</creator><creatorcontrib>Yu Hua ; Bin Xiao ; Veeravalli, B. ; Dan Feng</creatorcontrib><description>In many network applications, Bloom filters are used to support exact-matching membership query for their randomized space-efficient data structure with a small probability of false answers. In this paper, we extend the standard Bloom filter to Locality-Sensitive Bloom Filter (LSBF) to provide Approximate Membership Query (AMQ) service. We achieve this by replacing uniform and independent hash functions with locality-sensitive hash functions. Such replacement makes the storage in LSBF to be locality sensitive. Meanwhile, LSBF is space efficient and query responsive by employing the Bloom filter design. In the design of the LSBF structure, we propose a bit vector to reduce False Positives (FP). The bit vector can verify multiple attributes belonging to one member. We also use an active overflowed scheme to significantly decrease False Negatives (FN). Rigorous theoretical analysis (e.g., on FP, FN, and space overhead) shows that the design of LSBF is space compact and can provide accurate response to approximate membership queries. We have implemented LSBF in a real distributed system to perform extensive experiments using real-world traces. Experimental results show that LSBF, compared with a baseline approach and other state-of-the-art work in the literature (SmartStore and LSB-tree), takes less time to respond AMQ and consumes much less storage space.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2011.108</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Approximate membership query ; Arrays ; bloom filters ; Euclidean distance ; Extraterrestrial measurements ; Geometry ; locality sensitive hashing ; Probabilistic logic</subject><ispartof>IEEE transactions on computers, 2012-06, Vol.61 (6), p.817-830</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-a7a830e559af31af3cee99a6ee46f6821983a66217efc7ca107802628c19602b3</citedby><cites>FETCH-LOGICAL-c253t-a7a830e559af31af3cee99a6ee46f6821983a66217efc7ca107802628c19602b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5928322$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5928322$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu Hua</creatorcontrib><creatorcontrib>Bin Xiao</creatorcontrib><creatorcontrib>Veeravalli, B.</creatorcontrib><creatorcontrib>Dan Feng</creatorcontrib><title>Locality-Sensitive Bloom Filter for Approximate Membership Query</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>In many network applications, Bloom filters are used to support exact-matching membership query for their randomized space-efficient data structure with a small probability of false answers. In this paper, we extend the standard Bloom filter to Locality-Sensitive Bloom Filter (LSBF) to provide Approximate Membership Query (AMQ) service. We achieve this by replacing uniform and independent hash functions with locality-sensitive hash functions. Such replacement makes the storage in LSBF to be locality sensitive. Meanwhile, LSBF is space efficient and query responsive by employing the Bloom filter design. In the design of the LSBF structure, we propose a bit vector to reduce False Positives (FP). The bit vector can verify multiple attributes belonging to one member. We also use an active overflowed scheme to significantly decrease False Negatives (FN). Rigorous theoretical analysis (e.g., on FP, FN, and space overhead) shows that the design of LSBF is space compact and can provide accurate response to approximate membership queries. We have implemented LSBF in a real distributed system to perform extensive experiments using real-world traces. Experimental results show that LSBF, compared with a baseline approach and other state-of-the-art work in the literature (SmartStore and LSB-tree), takes less time to respond AMQ and consumes much less storage space.</description><subject>Accuracy</subject><subject>Approximate membership query</subject><subject>Arrays</subject><subject>bloom filters</subject><subject>Euclidean distance</subject><subject>Extraterrestrial measurements</subject><subject>Geometry</subject><subject>locality sensitive hashing</subject><subject>Probabilistic logic</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j0FLxDAUhIMoWFdPHr30Ll3fSzZpcnMtrgoVEeu5ZMMrRlpbkir232-XFQ_DMPAxzDB2ibBEBHNTFUsOiEsEfcQSlDLPjJHqmCUAqDMjVnDKzmL8BADFwSTstuydbf04ZW_0Ff3ofyi9a_u-Sze-HSmkTR_S9TCE_td3dqT0mbothfjhh_T1m8J0zk4a20a6-PMFe9_cV8VjVr48PBXrMnNcijGzudUCSEpjG4GzHJExVhGtVKM0R6OFVYpjTo3LnUXINXDFtUOjgG_Fgl0fel3oYwzU1EOYF4WpRqj35-uqqPfn56xn-upAeyL6J6XhWnAudroyVMM</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Yu Hua</creator><creator>Bin Xiao</creator><creator>Veeravalli, B.</creator><creator>Dan Feng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120601</creationdate><title>Locality-Sensitive Bloom Filter for Approximate Membership Query</title><author>Yu Hua ; Bin Xiao ; Veeravalli, B. ; Dan Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-a7a830e559af31af3cee99a6ee46f6821983a66217efc7ca107802628c19602b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Approximate membership query</topic><topic>Arrays</topic><topic>bloom filters</topic><topic>Euclidean distance</topic><topic>Extraterrestrial measurements</topic><topic>Geometry</topic><topic>locality sensitive hashing</topic><topic>Probabilistic logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu Hua</creatorcontrib><creatorcontrib>Bin Xiao</creatorcontrib><creatorcontrib>Veeravalli, B.</creatorcontrib><creatorcontrib>Dan Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu Hua</au><au>Bin Xiao</au><au>Veeravalli, B.</au><au>Dan Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locality-Sensitive Bloom Filter for Approximate Membership Query</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>61</volume><issue>6</issue><spage>817</spage><epage>830</epage><pages>817-830</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>In many network applications, Bloom filters are used to support exact-matching membership query for their randomized space-efficient data structure with a small probability of false answers. In this paper, we extend the standard Bloom filter to Locality-Sensitive Bloom Filter (LSBF) to provide Approximate Membership Query (AMQ) service. We achieve this by replacing uniform and independent hash functions with locality-sensitive hash functions. Such replacement makes the storage in LSBF to be locality sensitive. Meanwhile, LSBF is space efficient and query responsive by employing the Bloom filter design. In the design of the LSBF structure, we propose a bit vector to reduce False Positives (FP). The bit vector can verify multiple attributes belonging to one member. We also use an active overflowed scheme to significantly decrease False Negatives (FN). Rigorous theoretical analysis (e.g., on FP, FN, and space overhead) shows that the design of LSBF is space compact and can provide accurate response to approximate membership queries. We have implemented LSBF in a real distributed system to perform extensive experiments using real-world traces. Experimental results show that LSBF, compared with a baseline approach and other state-of-the-art work in the literature (SmartStore and LSB-tree), takes less time to respond AMQ and consumes much less storage space.</abstract><pub>IEEE</pub><doi>10.1109/TC.2011.108</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 2012-06, Vol.61 (6), p.817-830
issn 0018-9340
1557-9956
language eng
recordid cdi_ieee_primary_5928322
source IEEE Electronic Library (IEL)
subjects Accuracy
Approximate membership query
Arrays
bloom filters
Euclidean distance
Extraterrestrial measurements
Geometry
locality sensitive hashing
Probabilistic logic
title Locality-Sensitive Bloom Filter for Approximate Membership Query
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locality-Sensitive%20Bloom%20Filter%20for%20Approximate%20Membership%20Query&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Yu%20Hua&rft.date=2012-06-01&rft.volume=61&rft.issue=6&rft.spage=817&rft.epage=830&rft.pages=817-830&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2011.108&rft_dat=%3Ccrossref_RIE%3E10_1109_TC_2011_108%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5928322&rfr_iscdi=true