Decision making in a hybrid genetic algorithm

There are several issues that need to be taken into consideration when designing a hybrid problem solver. The paper focuses on one of them-decision making. More specifically, we address the following questions: given two different methods, how to get the most out of both of them? When should we use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lobo, F.G., Goldberg, D.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125
container_issue
container_start_page 121
container_title
container_volume
creator Lobo, F.G.
Goldberg, D.E.
description There are several issues that need to be taken into consideration when designing a hybrid problem solver. The paper focuses on one of them-decision making. More specifically, we address the following questions: given two different methods, how to get the most out of both of them? When should we use one and when should we use the other in order to get maximum efficiency? We present a model for hybridizing genetic algorithms (GAs) based on a concept that decision theorists call probability matching and we use it to combine an elitist selecto-recombinative GA with a simple hill climber (HC). Tests on an easy problem with a small population size match our intuition that both GA and HC are needed to solve the problem efficiently.
doi_str_mv 10.1109/ICEC.1997.592281
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_592281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>592281</ieee_id><sourcerecordid>592281</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-3227cda9d0d10d0b76fac53622143e1e4bf5df1e3b8dee2bcf861eae1f9ba1be3</originalsourceid><addsrcrecordid>eNotj8tKw0AUQAdEqNbui6v5gcR755FklhKrLRTc6LrM4056tUklyaZ_r1DP5uwOHCHWCCUiuKddu2lLdK4urVOqwRtxD3UDWjvj7EKspukL_jDGauvuRPFCkSc-D7L33zx0kgfp5fESRk6yo4FmjtKfuvPI87F_ELfZnyZa_XspPl83H-222L-_7drnfcEIZi60UnVM3iVICAlCXWUfra6UQqMJyYRsU0bSoUlEKsTcVEieMLvgMZBeisdrl4no8DNy78fL4TqkfwFuBUE4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Decision making in a hybrid genetic algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lobo, F.G. ; Goldberg, D.E.</creator><creatorcontrib>Lobo, F.G. ; Goldberg, D.E.</creatorcontrib><description>There are several issues that need to be taken into consideration when designing a hybrid problem solver. The paper focuses on one of them-decision making. More specifically, we address the following questions: given two different methods, how to get the most out of both of them? When should we use one and when should we use the other in order to get maximum efficiency? We present a model for hybridizing genetic algorithms (GAs) based on a concept that decision theorists call probability matching and we use it to combine an elitist selecto-recombinative GA with a simple hill climber (HC). Tests on an easy problem with a small population size match our intuition that both GA and HC are needed to solve the problem efficiently.</description><identifier>ISBN: 0780339495</identifier><identifier>ISBN: 9780780339491</identifier><identifier>DOI: 10.1109/ICEC.1997.592281</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Decision making ; Diversity reception ; Expert systems ; Genetic algorithms ; Jet engines ; Maintenance engineering ; Mathematical analysis ; Testing ; Turbines</subject><ispartof>Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97), 1997, p.121-125</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/592281$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/592281$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lobo, F.G.</creatorcontrib><creatorcontrib>Goldberg, D.E.</creatorcontrib><title>Decision making in a hybrid genetic algorithm</title><title>Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)</title><addtitle>ICEC</addtitle><description>There are several issues that need to be taken into consideration when designing a hybrid problem solver. The paper focuses on one of them-decision making. More specifically, we address the following questions: given two different methods, how to get the most out of both of them? When should we use one and when should we use the other in order to get maximum efficiency? We present a model for hybridizing genetic algorithms (GAs) based on a concept that decision theorists call probability matching and we use it to combine an elitist selecto-recombinative GA with a simple hill climber (HC). Tests on an easy problem with a small population size match our intuition that both GA and HC are needed to solve the problem efficiently.</description><subject>Algorithm design and analysis</subject><subject>Decision making</subject><subject>Diversity reception</subject><subject>Expert systems</subject><subject>Genetic algorithms</subject><subject>Jet engines</subject><subject>Maintenance engineering</subject><subject>Mathematical analysis</subject><subject>Testing</subject><subject>Turbines</subject><isbn>0780339495</isbn><isbn>9780780339491</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tKw0AUQAdEqNbui6v5gcR755FklhKrLRTc6LrM4056tUklyaZ_r1DP5uwOHCHWCCUiuKddu2lLdK4urVOqwRtxD3UDWjvj7EKspukL_jDGauvuRPFCkSc-D7L33zx0kgfp5fESRk6yo4FmjtKfuvPI87F_ELfZnyZa_XspPl83H-222L-_7drnfcEIZi60UnVM3iVICAlCXWUfra6UQqMJyYRsU0bSoUlEKsTcVEieMLvgMZBeisdrl4no8DNy78fL4TqkfwFuBUE4</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Lobo, F.G.</creator><creator>Goldberg, D.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Decision making in a hybrid genetic algorithm</title><author>Lobo, F.G. ; Goldberg, D.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-3227cda9d0d10d0b76fac53622143e1e4bf5df1e3b8dee2bcf861eae1f9ba1be3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithm design and analysis</topic><topic>Decision making</topic><topic>Diversity reception</topic><topic>Expert systems</topic><topic>Genetic algorithms</topic><topic>Jet engines</topic><topic>Maintenance engineering</topic><topic>Mathematical analysis</topic><topic>Testing</topic><topic>Turbines</topic><toplevel>online_resources</toplevel><creatorcontrib>Lobo, F.G.</creatorcontrib><creatorcontrib>Goldberg, D.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lobo, F.G.</au><au>Goldberg, D.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Decision making in a hybrid genetic algorithm</atitle><btitle>Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)</btitle><stitle>ICEC</stitle><date>1997</date><risdate>1997</risdate><spage>121</spage><epage>125</epage><pages>121-125</pages><isbn>0780339495</isbn><isbn>9780780339491</isbn><abstract>There are several issues that need to be taken into consideration when designing a hybrid problem solver. The paper focuses on one of them-decision making. More specifically, we address the following questions: given two different methods, how to get the most out of both of them? When should we use one and when should we use the other in order to get maximum efficiency? We present a model for hybridizing genetic algorithms (GAs) based on a concept that decision theorists call probability matching and we use it to combine an elitist selecto-recombinative GA with a simple hill climber (HC). Tests on an easy problem with a small population size match our intuition that both GA and HC are needed to solve the problem efficiently.</abstract><pub>IEEE</pub><doi>10.1109/ICEC.1997.592281</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780339495
ispartof Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97), 1997, p.121-125
issn
language eng
recordid cdi_ieee_primary_592281
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Decision making
Diversity reception
Expert systems
Genetic algorithms
Jet engines
Maintenance engineering
Mathematical analysis
Testing
Turbines
title Decision making in a hybrid genetic algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Decision%20making%20in%20a%20hybrid%20genetic%20algorithm&rft.btitle=Proceedings%20of%201997%20IEEE%20International%20Conference%20on%20Evolutionary%20Computation%20(ICEC%20'97)&rft.au=Lobo,%20F.G.&rft.date=1997&rft.spage=121&rft.epage=125&rft.pages=121-125&rft.isbn=0780339495&rft.isbn_list=9780780339491&rft_id=info:doi/10.1109/ICEC.1997.592281&rft_dat=%3Cieee_6IE%3E592281%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=592281&rfr_iscdi=true